論文の概要: Interpretable Data Fusion for Distributed Learning: A Representative Approach via Gradient Matching
- arxiv url: http://arxiv.org/abs/2405.03782v1
- Date: Mon, 6 May 2024 18:21:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:14:30.660462
- Title: Interpretable Data Fusion for Distributed Learning: A Representative Approach via Gradient Matching
- Title(参考訳): 分散学習のための解釈可能なデータ融合:グラディエントマッチングによる代表的アプローチ
- Authors: Mengchen Fan, Baocheng Geng, Keren Li, Xueqian Wang, Pramod K. Varshney,
- Abstract要約: 本稿では,複数の生データポイントを仮想表現に変換する分散学習のための代表的アプローチを提案する。
これにより、広範囲なデータセットを消化可能なフォーマットに凝縮し、直感的な人間と機械の相互作用を促進する。
- 参考スコア(独自算出の注目度): 19.193379036629167
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a representative-based approach for distributed learning that transforms multiple raw data points into a virtual representation. Unlike traditional distributed learning methods such as Federated Learning, which do not offer human interpretability, our method makes complex machine learning processes accessible and comprehensible. It achieves this by condensing extensive datasets into digestible formats, thus fostering intuitive human-machine interactions. Additionally, this approach maintains privacy and communication efficiency, and it matches the training performance of models using raw data. Simulation results show that our approach is competitive with or outperforms traditional Federated Learning in accuracy and convergence, especially in scenarios with complex models and a higher number of clients. This framework marks a step forward in integrating human intuition with machine intelligence, which potentially enhances human-machine learning interfaces and collaborative efforts.
- Abstract(参考訳): 本稿では,複数の生データポイントを仮想表現に変換する分散学習のための代表的アプローチを提案する。
人間の解釈可能性を提供しないフェデレートラーニングのような従来の分散学習方法とは異なり、複雑な機械学習プロセスはアクセスしやすく、理解しやすい。
これにより、広範囲なデータセットを消化可能なフォーマットに凝縮し、直感的な人間と機械の相互作用を促進する。
さらに、このアプローチでは、プライバシと通信効率が維持され、生データを使用したモデルのトレーニング性能にマッチする。
シミュレーションの結果,従来のフェデレートラーニング(Federated Learning)の精度と収束性,特に複雑なモデルやクライアント数の多いシナリオでは,私たちのアプローチは競争力があるか,あるいは優れています。
このフレームワークは、人間の直感とマシンインテリジェンスを統合するための一歩となる。
関連論文リスト
- Accelerated Stochastic ExtraGradient: Mixing Hessian and Gradient Similarity to Reduce Communication in Distributed and Federated Learning [50.382793324572845]
分散コンピューティングはデバイス間の通信を伴うため、効率性とプライバシという2つの重要な問題を解決する必要がある。
本稿では,データ類似性とクライアントサンプリングのアイデアを取り入れた新しい手法について分析する。
プライバシー問題に対処するために,付加雑音の手法を適用し,提案手法の収束への影響を解析する。
論文 参考訳(メタデータ) (2024-09-22T00:49:10Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
フェデレーション学習は、分散データソース上で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
本稿では,フェデレートラーニングとメタラーニングを併用して,効率性と一般化能力を両立させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-23T08:18:22Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
本稿では,人間の認知過程をシミュレートするために強化学習フレームワークを用いる。
また,マルチモーダル情報から特徴を抽出・融合するマルチエージェントフレームワークをデプロイした。
我々は、OS-MN40、OS-MN40-Miss、Cifar10データセットを用いて、3Dドメインと2Dドメインの両方でのアプローチの性能を示す。
論文 参考訳(メタデータ) (2023-08-26T07:55:32Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - A Federated Learning Aggregation Algorithm for Pervasive Computing:
Evaluation and Comparison [0.6299766708197883]
広範コンピューティングは、サービス提供のために、リビングスペースに接続デバイスをインストールすることを促進する。
エッジリソースの高度な利用と、エンジニアリングアプリケーションのための機械学習技術の統合だ。
本稿では,FedDistと呼ばれる新しいアグリゲーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-19T19:43:28Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Federated Learning System without Model Sharing through Integration of
Dimensional Reduced Data Representations [6.9485501711137525]
本稿では,教師付き学習タスクに先立って,分散データの次元削減表現を統合可能なフェデレート学習システムを提案する。
画像分類タスクにおけるこのアプローチのパフォーマンスを、集中型機械学習、個別機械学習、フェデレート平均化の3つのフレームワークと比較する。
提案手法は,Federated Averagingと同等の精度で,小規模なユーザ環境でのFederated Averagingよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-13T08:12:00Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。