Tensor Network Computations That Capture Strict Variationality, Volume Law Behavior, and the Efficient Representation of Neural Network States
- URL: http://arxiv.org/abs/2405.03797v2
- Date: Tue, 21 May 2024 19:21:22 GMT
- Title: Tensor Network Computations That Capture Strict Variationality, Volume Law Behavior, and the Efficient Representation of Neural Network States
- Authors: Wen-Yuan Liu, Si-Jing Du, Ruojing Peng, Johnnie Gray, Garnet Kin-Lic Chan,
- Abstract summary: We introduce a change of perspective on tensor network states that is defined by the computational graph of the contraction of an amplitude.
The resulting class of states, which we refer to as tensor network functions, inherit the conceptual advantages of tensor network states while removing computational restrictions arising from the need to converge approximate contractions.
We use tensor network functions to compute strict variational estimates of the energy on loopy graphs, analyze their expressive power for ground-states, show that we can capture aspects of volume law time evolution, and provide a mapping of general feed-forward neural nets onto efficient tensor network functions.
- Score: 0.6148049086034199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a change of perspective on tensor network states that is defined by the computational graph of the contraction of an amplitude. The resulting class of states, which we refer to as tensor network functions, inherit the conceptual advantages of tensor network states while removing computational restrictions arising from the need to converge approximate contractions. We use tensor network functions to compute strict variational estimates of the energy on loopy graphs, analyze their expressive power for ground-states, show that we can capture aspects of volume law time evolution, and provide a mapping of general feed-forward neural nets onto efficient tensor network functions. Our work expands the realm of computable tensor networks to ones where accurate contraction methods are not available, and opens up new avenues to use tensor networks.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Hyper-optimized approximate contraction of tensor networks with
arbitrary geometry [0.0]
We describe how to approximate tensor network contraction through bond compression on arbitrary graphs.
In particular, we introduce a hyper-optimization over the compression and contraction strategy itself to minimize error and cost.
arXiv Detail & Related papers (2022-06-14T17:59:16Z) - Tensor Network States with Low-Rank Tensors [6.385624548310884]
We introduce the idea of imposing low-rank constraints on the tensors that compose the tensor network.
With this modification, the time and complexities for the network optimization can be substantially reduced.
We find that choosing the tensor rank $r$ to be on the order of the bond $m$, is sufficient to obtain high-accuracy groundstate approximations.
arXiv Detail & Related papers (2022-05-30T17:58:16Z) - A Practical Guide to the Numerical Implementation of Tensor Networks I:
Contractions, Decompositions and Gauge Freedom [0.0]
We present an overview of the key ideas and skills necessary to begin implementing tensor network methods numerically.
The topics presented are of key importance to many common tensor network algorithms such as DMRG, TEBD, TRG, PEPS and MERA.
arXiv Detail & Related papers (2022-02-04T14:10:09Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
A promising strategy is based on tensor networks, which have been very successful in physical and chemical applications.
We show that the weights of a multidimensional regression model can be learned by means of tensor networks with the aim of performing a powerful compact representation.
An algorithm based on alternating least squares has been proposed for approximating the weights in TT-format with a reduction of computational power.
arXiv Detail & Related papers (2021-01-22T16:14:38Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - T-Basis: a Compact Representation for Neural Networks [89.86997385827055]
We introduce T-Basis, a concept for a compact representation of a set of tensors, each of an arbitrary shape, which is often seen in Neural Networks.
We evaluate the proposed approach on the task of neural network compression and demonstrate that it reaches high compression rates at acceptable performance drops.
arXiv Detail & Related papers (2020-07-13T19:03:22Z) - Anomaly Detection with Tensor Networks [2.3895981099137535]
We exploit the memory and computational efficiency of tensor networks to learn a linear transformation over a space with a dimension exponential in the number of original features.
We produce competitive results on image datasets, despite not exploiting the locality of images.
arXiv Detail & Related papers (2020-06-03T20:41:30Z) - Molecule Property Prediction and Classification with Graph Hypernetworks [113.38181979662288]
We show that the replacement of the underlying networks with hypernetworks leads to a boost in performance.
A major difficulty in the application of hypernetworks is their lack of stability.
A recent work has tackled the training instability of hypernetworks in the context of error correcting codes.
arXiv Detail & Related papers (2020-02-01T16:44:34Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
We advance the understanding of the relations between the network's architecture and its generalizability from the compression perspective.
We propose a series of intuitive, data-dependent and easily-measurable properties that tightly characterize the compressibility and generalizability of neural networks.
arXiv Detail & Related papers (2020-01-14T22:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.