論文の概要: Synthetic Data from Diffusion Models Improve Drug Discovery Prediction
- arxiv url: http://arxiv.org/abs/2405.03799v1
- Date: Mon, 6 May 2024 19:09:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:04:45.041904
- Title: Synthetic Data from Diffusion Models Improve Drug Discovery Prediction
- Title(参考訳): 拡散モデルからの合成データによる薬物発見予測の改善
- Authors: Bing Hu, Ashish Saragadam, Anita Layton, Helen Chen,
- Abstract要約: データあいまいさは、重要な研究課題に答えようとする研究者にとって、データのキュレーションを難しくする。
本稿では,リガンドおよび薬物動態データをエンドツーエンドに生成できる新しい拡散GNNモデルSyngandを提案する。
我々は,AqSolDB,LD50,hERGを中心とした下流回帰タスクにおいて,Syngand生成した合成目標データの有効性について,最初の有望な結果を示した。
- 参考スコア(独自算出の注目度): 1.3686993145787065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is increasingly used in every stage of drug development. Continuing breakthroughs in AI-based methods for drug discovery require the creation, improvement, and refinement of drug discovery data. We posit a new data challenge that slows the advancement of drug discovery AI: datasets are often collected independently from each other, often with little overlap, creating data sparsity. Data sparsity makes data curation difficult for researchers looking to answer key research questions requiring values posed across multiple datasets. We propose a novel diffusion GNN model Syngand capable of generating ligand and pharmacokinetic data end-to-end. We show and provide a methodology for sampling pharmacokinetic data for existing ligands using our Syngand model. We show the initial promising results on the efficacy of the Syngand-generated synthetic target property data on downstream regression tasks with AqSolDB, LD50, and hERG central. Using our proposed model and methodology, researchers can easily generate synthetic ligand data to help them explore research questions that require data spanning multiple datasets.
- Abstract(参考訳): 人工知能(AI)は、薬物開発におけるあらゆる段階において使われるようになっている。
薬物発見のためのAIベースの方法の継続的なブレークスルーは、薬物発見データの作成、改善、改善を必要とする。
私たちは、薬物発見AIの進歩を遅らせる新しいデータ課題を提示します。
データあいまいさは、複数のデータセットにまたがる値を必要とする重要な研究課題に答えようとする研究者にとって、データのキュレーションを難しくする。
本稿では,リガンドおよび薬物動態データをエンドツーエンドに生成できる新しい拡散GNNモデルSyngandを提案する。
我々は,既存のリガンドの薬物動態データをSyngandモデルを用いてサンプリングする方法を提示し,提案する。
我々は,AqSolDB,LD50,hERGを中心とした下流回帰タスクにおいて,Syngand生成した合成目標データの有効性について,最初の有望な結果を示した。
提案したモデルと手法を用いて、研究者は簡単に合成リガンドデータを生成し、複数のデータセットにまたがるデータを必要とする研究課題を探索するのに役立つ。
関連論文リスト
- Hierarchical Conditional Tabular GAN for Multi-Tabular Synthetic Data Generation [0.0]
複雑な多言語データセットから多言語データを合成するアルゴリズムHCTGANを提案する。
提案アルゴリズムは, 深層・複雑な多言語データセットに対して, 大量の合成データをより効率的にサンプリングできることを示す。
我々は,HCTGANアルゴリズムが複雑な関係を持つ深層多言語データセットに対して,大量の合成データを効率的に生成するのに適していると結論付けた。
論文 参考訳(メタデータ) (2024-11-11T14:09:26Z) - Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
本稿では, 複雑度の異なる3つの生成モデルを用いて, 悪意ネットワークトラフィックを合成する手法を提案する。
提案手法は,数値データをテキストに変換し,言語モデリングタスクとして再フレーミングする。
提案手法は,高忠実度合成データの生成において,最先端の生成モデルを超えている。
論文 参考訳(メタデータ) (2024-11-04T09:51:10Z) - Drug Discovery SMILES-to-Pharmacokinetics Diffusion Models with Deep Molecular Understanding [1.4952056744888913]
ImagandはSMILES-to-Pharmacokinetic (S2PK)拡散モデルであり、SMILES入力に条件付けされたPKターゲット特性の配列を生成することができる。
Imagandは、データの重複する空間に対する有望なソリューションであり、研究者は薬物発見研究のためのリガンドPKデータを効率的に生成することができる。
論文 参考訳(メタデータ) (2024-08-14T16:01:02Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - STAR: Boosting Low-Resource Information Extraction by Structure-to-Text
Data Generation with Large Language Models [56.27786433792638]
STARは大規模言語モデル(LLM)を利用してデータインスタンスを合成するデータ生成手法である。
我々は、初期データインスタンスを取得するための詳細なステップバイステップ命令を設計する。
実験の結果,STARが生成したデータは,低リソースイベント抽出および関係抽出タスクの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-05-24T12:15:19Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Synthetic data generation for a longitudinal cohort study -- Evaluation,
method extension and reproduction of published data analysis results [0.32593385688760446]
医療分野では、プライバシー上の懸念から個人レベルのデータへのアクセスは困難であることが多い。
有望な代替手段は、完全な合成データの生成である。
本研究では,最先端の合成データ生成手法を用いる。
論文 参考訳(メタデータ) (2023-05-12T13:13:55Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - ImDrug: A Benchmark for Deep Imbalanced Learning in AI-aided Drug
Discovery [79.08833067391093]
現実世界の医薬品のデータセットは、しばしば高度に不均衡な分布を示す。
ImDrugはオープンソースのPythonライブラリを備えたベンチマークで、4つの不均衡設定、11のAI対応データセット、54の学習タスク、16のベースラインアルゴリズムで構成されています。
ドラッグ発見パイプラインの幅広い範囲にまたがる問題やソリューションに対して、アクセス可能でカスタマイズ可能なテストベッドを提供する。
論文 参考訳(メタデータ) (2022-09-16T13:35:57Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。