論文の概要: End-to-End Autoencoder for Drill String Acoustic Communications
- arxiv url: http://arxiv.org/abs/2405.03840v1
- Date: Mon, 6 May 2024 20:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 16:07:44.164344
- Title: End-to-End Autoencoder for Drill String Acoustic Communications
- Title(参考訳): ドリルストリング音響通信のためのエンド・ツー・エンドオートエンコーダ
- Authors: Iurii Lezhenin, Aleksandr Sidnev, Vladimir Tsygan, Igor Malyshev,
- Abstract要約: 本稿では, 深層学習用オートエンコーダ (AE) を用いた終端通信システムを提案する。
AEはBERとPAPRの点でベースライン非連続OFDMシステムより優れ、低レイテンシで動作する。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drill string communications are important for drilling efficiency and safety. The design of a low latency drill string communication system with high throughput and reliability remains an open challenge. In this paper a deep learning autoencoder (AE) based end-to-end communication system, where transmitter and receiver implemented as feed forward neural networks, is proposed for acousticdrill string communications. Simulation shows that the AE system is able to outperform a baseline non-contiguous OFDM system in terms of BER and PAPR, operating with lower latency.
- Abstract(参考訳): ドリルストリング通信は掘削効率と安全性に重要である。
高いスループットと信頼性を備えた低レイテンシドリル文字列通信システムの設計は、依然としてオープンな課題である。
本稿では,送信機と受信機をフィードフォワードニューラルネットワークとして実装した,AEを用いたエンドツーエンド通信システムを提案する。
シミュレーションにより、AEシステムはBERおよびPAPRの観点からベースラインの非連続OFDMシステムよりも高速に動作し、低レイテンシで動作可能であることが示された。
関連論文リスト
- Physical Layer Deception with Non-Orthogonal Multiplexing [52.11755709248891]
本稿では,ワイヤタッピングの試みに積極的に対処する物理層騙し(PLD)の枠組みを提案する。
PLDはPLSと偽装技術を組み合わせることで、積極的に盗聴の試みに対処する。
本研究では,PLDフレームワークの有効性を詳細な分析で証明し,従来のPLS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-30T16:17:39Z) - Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
一般マルチインプット・マルチアウトプット(MIMO)干渉チャネルに対するインターフェクト・ロバスト・セマンティック通信(IRSC)方式を提案する。
このスキームはニューラルネットワーク(NN)に基づくトランシーバの開発を伴い、チャネル状態情報(CSI)を受信機のみ、または送信機と受信機の両方の端で統合する。
実験結果から、IRSC方式は干渉を緩和し、ベースラインアプローチより優れることを示す。
論文 参考訳(メタデータ) (2024-04-10T11:40:22Z) - Joint Sensing and Semantic Communications with Multi-Task Deep Learning [49.83882366499547]
無線チャンネル上で動作し、ノイズ及びフェーディング効果を受ける送信機と受信機とを含む統合システムである。
送信機は、ソースコーディング、チャネルコーディング、変調のジョイントオペレーションのために、ディープニューラルネットワーク、すなわちエンコーダを使用する。
受信機は、復調、チャネル復号、ソース復号のジョイントオペレーションにおいて、別のディープニューラルネットワーク、すなわちデコーダを使用してデータサンプルを再構築する。
論文 参考訳(メタデータ) (2023-11-08T21:03:43Z) - Task-Oriented Communications for NextG: End-to-End Deep Learning and AI
Security Aspects [78.84264189471936]
NextG通信システムは,タスク指向通信などのタスクを確実に実行するために,この設計パラダイムのシフトを探求し始めている。
無線信号分類はNextG Radio Access Network (RAN) のタスクであり、エッジデバイスはスペクトル認識のための無線信号を収集し、信号ラベルを識別する必要があるNextGベースステーション(gNodeB)と通信する。
エッジデバイスとgNodeB用のエンコーダデコーダ対として、送信機、受信機、および分類器機能を共同で訓練することで、タスク指向通信を考える。
論文 参考訳(メタデータ) (2022-12-19T17:54:36Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - End-to-End Autoencoder Communications with Optimized Interference
Suppression [1.8176606453818558]
直交周波数分割多重化(OFDM)に基づくエンドツーエンド通信システムをオートエンコーダ(AE)としてモデル化する。
GAN(Generative Adversarial Network)は、トレーニングデータが不十分な場合にトレーニングデータを増強するように訓練される。
干渉訓練とランダムな平滑化は、未知かつダイナミックな干渉効果の下で運用するためにAE通信を訓練するために導入された。
論文 参考訳(メタデータ) (2021-12-29T18:09:23Z) - End-to-End Learning of Neuromorphic Wireless Systems for Low-Power Edge
Artificial Intelligence [38.518936229794214]
我々は、ニューロモルフィックセンシング、インパルスラジオ(IR)、スパイキングニューラルネットワーク(SNN)に基づく、遠隔無線推論のための新しい「オールスパイク」低電力ソリューションを提案する。
我々は,エンコーダ,チャネル,デコーダのカスケードを,JSCC(Joint Source-Channel Coding)を実装した確率的SNNベースのオートエンコーダとして扱うエンドツーエンドのトレーニング手順を導入する。
実験により、提案したエンドツーエンドのニューロモルフィックエッジアーキテクチャが、効率的で低レイテンシなリモートセンシング、通信、推論のための有望なフレームワークを提供することを確認した。
論文 参考訳(メタデータ) (2020-09-03T09:10:16Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。