Self-Improving Customer Review Response Generation Based on LLMs
- URL: http://arxiv.org/abs/2405.03845v1
- Date: Mon, 6 May 2024 20:50:17 GMT
- Title: Self-Improving Customer Review Response Generation Based on LLMs
- Authors: Guy Azov, Tatiana Pelc, Adi Fledel Alon, Gila Kamhi,
- Abstract summary: SCRABLE represents an adaptive customer review response automation that enhances itself with self-optimizing prompts.
We introduce an automatic scoring mechanism that mimics the role of a human evaluator to assess the quality of responses generated in customer review domains.
- Score: 1.9274286238176854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous studies have demonstrated that proactive interaction with user reviews has a positive impact on the perception of app users and encourages them to submit revised ratings. Nevertheless, developers encounter challenges in managing a high volume of reviews, particularly in the case of popular apps with a substantial influx of daily reviews. Consequently, there is a demand for automated solutions aimed at streamlining the process of responding to user reviews. To address this, we have developed a new system for generating automatic responses by leveraging user-contributed documents with the help of retrieval-augmented generation (RAG) and advanced Large Language Models (LLMs). Our solution, named SCRABLE, represents an adaptive customer review response automation that enhances itself with self-optimizing prompts and a judging mechanism based on LLMs. Additionally, we introduce an automatic scoring mechanism that mimics the role of a human evaluator to assess the quality of responses generated in customer review domains. Extensive experiments and analyses conducted on real-world datasets reveal that our method is effective in producing high-quality responses, yielding improvement of more than 8.5% compared to the baseline. Further validation through manual examination of the generated responses underscores the efficacy our proposed system.
Related papers
- MIRROR: A Novel Approach for the Automated Evaluation of Open-Ended Question Generation [0.4857223913212445]
We propose a novel system, MIRROR, to automate the evaluation process for questions generated by automated question generation systems.
We observed that the scores of human evaluation metrics, namely relevance, appropriateness, novelty, complexity, and grammaticality, improved when using the feedback-based approach called MIRROR.
arXiv Detail & Related papers (2024-10-16T12:24:42Z) - An Automatic and Cost-Efficient Peer-Review Framework for Language Generation Evaluation [29.81362106367831]
Existing evaluation methods often suffer from high costs, limited test formats, the need of human references, and systematic evaluation biases.
In contrast to previous studies that rely on human annotations, Auto-PRE selects evaluators automatically based on their inherent traits.
Experimental results indicate our Auto-PRE achieves state-of-the-art performance at a lower cost.
arXiv Detail & Related papers (2024-10-16T06:06:06Z) - AERA Chat: An Interactive Platform for Automated Explainable Student Answer Assessment [12.970776782360366]
AERA Chat is an interactive platform to provide visually explained assessment of student answers.
Users can input questions and student answers to obtain automated, explainable assessment results from large language models.
arXiv Detail & Related papers (2024-10-12T11:57:53Z) - Assessing the Performance of Human-Capable LLMs -- Are LLMs Coming for Your Job? [0.0]
SelfScore is a benchmark designed to assess the performance of automated Large Language Model (LLM) agents on help desk and professional consultation tasks.
The benchmark evaluates agents on problem complexity and response helpfulness, ensuring transparency and simplicity in its scoring system.
The study raises concerns about the potential displacement of human workers, especially in areas where AI technologies excel.
arXiv Detail & Related papers (2024-10-05T14:37:35Z) - Unveiling the Achilles' Heel of NLG Evaluators: A Unified Adversarial Framework Driven by Large Language Models [52.368110271614285]
We introduce AdvEval, a novel black-box adversarial framework against NLG evaluators.
AdvEval is specially tailored to generate data that yield strong disagreements between human and victim evaluators.
We conduct experiments on 12 victim evaluators and 11 NLG datasets, spanning tasks including dialogue, summarization, and question evaluation.
arXiv Detail & Related papers (2024-05-23T14:48:15Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Continually Improving Extractive QA via Human Feedback [59.49549491725224]
We study continually improving an extractive question answering (QA) system via human user feedback.
We conduct experiments involving thousands of user interactions under diverse setups to broaden the understanding of learning from feedback over time.
arXiv Detail & Related papers (2023-05-21T14:35:32Z) - Reranking Overgenerated Responses for End-to-End Task-Oriented Dialogue
Systems [71.33737787564966]
End-to-end (E2E) task-oriented dialogue (ToD) systems are prone to fall into the so-called 'likelihood trap'
We propose a reranking method which aims to select high-quality items from the lists of responses initially overgenerated by the system.
Our methods improve a state-of-the-art E2E ToD system by 2.4 BLEU, 3.2 ROUGE, and 2.8 METEOR scores, achieving new peak results.
arXiv Detail & Related papers (2022-11-07T15:59:49Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z) - Automating App Review Response Generation [67.58267006314415]
We propose a novel approach RRGen that automatically generates review responses by learning knowledge relations between reviews and their responses.
Experiments on 58 apps and 309,246 review-response pairs highlight that RRGen outperforms the baselines by at least 67.4% in terms of BLEU-4.
arXiv Detail & Related papers (2020-02-10T05:23:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.