RAG-Zeval: Towards Robust and Interpretable Evaluation on RAG Responses through End-to-End Rule-Guided Reasoning
- URL: http://arxiv.org/abs/2505.22430v1
- Date: Wed, 28 May 2025 14:55:33 GMT
- Title: RAG-Zeval: Towards Robust and Interpretable Evaluation on RAG Responses through End-to-End Rule-Guided Reasoning
- Authors: Kun Li, Yunxiang Li, Tianhua Zhang, Hongyin Luo, Xixin Wu, James Glass, Helen Meng,
- Abstract summary: RAG-Zeval is a novel end-to-end framework that formulates faithfulness and correctness evaluation as a rule-guided reasoning task.<n>Our approach trains evaluators with reinforcement learning, facilitating compact models to generate comprehensive and sound assessments.<n>Experiments demonstrate RAG-Zeval's superior performance, achieving the strongest correlation with human judgments.
- Score: 64.46921169261852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust evaluation is critical for deploying trustworthy retrieval-augmented generation (RAG) systems. However, current LLM-based evaluation frameworks predominantly rely on directly prompting resource-intensive models with complex multi-stage prompts, underutilizing models' reasoning capabilities and introducing significant computational cost. In this paper, we present RAG-Zeval (RAG-Zero Evaluator), a novel end-to-end framework that formulates faithfulness and correctness evaluation as a rule-guided reasoning task. Our approach trains evaluators with reinforcement learning, facilitating compact models to generate comprehensive and sound assessments with detailed explanation in one-pass. We introduce a ranking-based outcome reward mechanism, using preference judgments rather than absolute scores, to address the challenge of obtaining precise pointwise reward signals. To this end, we synthesize the ranking references by generating quality-controlled responses with zero human annotation. Experiments demonstrate RAG-Zeval's superior performance, achieving the strongest correlation with human judgments and outperforming baselines that rely on LLMs with 10-100 times more parameters. Our approach also exhibits superior interpretability in response evaluation.
Related papers
- Intra-Trajectory Consistency for Reward Modeling [67.84522106537274]
We develop an intra-trajectory consistency regularization to enforce that adjacent processes with higher next-token generation probability maintain more consistent rewards.<n>We show that the reward model trained with the proposed regularization induces better DPO-aligned policies and achieves better best-of-N (BON) inference-time verification results.
arXiv Detail & Related papers (2025-06-10T12:59:14Z) - T2I-Eval-R1: Reinforcement Learning-Driven Reasoning for Interpretable Text-to-Image Evaluation [60.620408007636016]
We propose T2I-Eval-R1, a novel reinforcement learning framework that trains open-source MLLMs using only coarse-grained quality scores.<n>Our approach integrates Group Relative Policy Optimization into the instruction-tuning process, enabling models to generate both scalar scores and interpretable reasoning chains.
arXiv Detail & Related papers (2025-05-23T13:44:59Z) - RAGXplain: From Explainable Evaluation to Actionable Guidance of RAG Pipelines [0.7373617024876725]
RAGXplain is an evaluation framework that quantifies RAG performance and translates these assessments into clear insights.<n> RAGXplain thus bridges quantitative evaluation and practical optimization, empowering users to understand, trust, and enhance their AI systems.
arXiv Detail & Related papers (2025-05-18T17:25:34Z) - From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback [36.68929551237421]
We introduce bftextFeedbacker, an evaluation framework that provides comprehensive and fine-grained results.<n>Our project homepage and dataset are available at https://liudan193.io/Feedbacker.
arXiv Detail & Related papers (2025-05-10T16:52:40Z) - The Great Nugget Recall: Automating Fact Extraction and RAG Evaluation with Large Language Models [53.12387628636912]
We propose an automatic evaluation framework that is validated against human annotations.<n>This approach was originally developed for the TREC Question Answering (QA) Track in 2003.<n>We observe strong agreement at the run level between scores derived from fully automatic nugget evaluation and human-based variants.
arXiv Detail & Related papers (2025-04-21T12:55:06Z) - AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAG has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs)<n>Standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions.<n>In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: textitReasoning Misalignment.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - RMB: Comprehensively Benchmarking Reward Models in LLM Alignment [44.84304822376291]
Reward models (RMs) guide the alignment of large language models (LLMs)<n>We propose RMB, a comprehensive RM benchmark that covers over 49 real-world scenarios.<n>Based on our benchmark, we conduct extensive analysis on the state-of-the-art RMs.
arXiv Detail & Related papers (2024-10-13T16:06:54Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Evaluating RAG-Fusion with RAGElo: an Automated Elo-based Framework [0.5897092980823265]
We propose a comprehensive framework to evaluate Retrieval-Augmented Generation (RAG) Question-Answering systems.
We use Large Language Models (LLMs) to generate large datasets of synthetic queries based on real user queries and in-domain documents.
We find that RAGElo positively aligns with the preferences of human annotators, though due caution is still required.
arXiv Detail & Related papers (2024-06-20T23:20:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.