CityLearn v2: Energy-flexible, resilient, occupant-centric, and carbon-aware management of grid-interactive communities
- URL: http://arxiv.org/abs/2405.03848v1
- Date: Thu, 2 May 2024 16:31:09 GMT
- Title: CityLearn v2: Energy-flexible, resilient, occupant-centric, and carbon-aware management of grid-interactive communities
- Authors: Kingsley Nweye, Kathryn Kaspar, Giacomo Buscemi, Tiago Fonseca, Giuseppe Pinto, Dipanjan Ghose, Satvik Duddukuru, Pavani Pratapa, Han Li, Javad Mohammadi, Luis Lino Ferreira, Tianzhen Hong, Mohamed Ouf, Alfonso Capozzoli, Zoltan Nagy,
- Abstract summary: CityLearn provides an environment for benchmarking simple and advanced distributed energy resource control algorithms.
This work details the v2 environment design and provides application examples that utilize reinforcement learning to manage battery energy storage system charging/discharging cycles, vehicle-to-grid control, and thermal comfort during heat pump power modulation.
- Score: 8.658740257657564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As more distributed energy resources become part of the demand-side infrastructure, it is important to quantify the energy flexibility they provide on a community scale, particularly to understand the impact of geographic, climatic, and occupant behavioral differences on their effectiveness, as well as identify the best control strategies to accelerate their real-world adoption. CityLearn provides an environment for benchmarking simple and advanced distributed energy resource control algorithms including rule-based, model-predictive, and reinforcement learning control. CityLearn v2 presented here extends CityLearn v1 by providing a simulation environment that leverages the End-Use Load Profiles for the U.S. Building Stock dataset to create virtual grid-interactive communities for resilient, multi-agent distributed energy resources and objective control with dynamic occupant feedback. This work details the v2 environment design and provides application examples that utilize reinforcement learning to manage battery energy storage system charging/discharging cycles, vehicle-to-grid control, and thermal comfort during heat pump power modulation.
Related papers
- EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
This paper introduces EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management framework.
It enables user-centric and multi-objective energy management by allowing each prosumer to select from a range of personal management objectives.
The efficacy of EnergAIze was evaluated through case studies employing the CityLearn simulation framework.
arXiv Detail & Related papers (2024-04-02T23:16:17Z) - Explainable Reinforcement Learning-based Home Energy Management Systems using Differentiable Decision Trees [4.573008040057806]
The residential sector is another major and largely untapped source of flexibility, driven by the increased adoption of solar PV, home batteries, and EVs.
We introduce a reinforcement learning-based approach using differentiable decision trees.
This approach integrates the scalability of data-driven reinforcement learning with the explainability of (differentiable) decision trees.
As a proof-of-concept, we analyze our method using a home energy management problem, comparing its performance with commercially available rule-based baseline and standard neural network-based RL controllers.
arXiv Detail & Related papers (2024-03-18T16:40:41Z) - Real-World Implementation of Reinforcement Learning Based Energy
Coordination for a Cluster of Households [3.901860248668672]
We present a real-life pilot study that studies the effectiveness of reinforcement-learning (RL) in coordinating the power consumption of 8 residential buildings to jointly track a target power signal.
Our results demonstrate satisfactory power tracking, and the effectiveness of the RL-based ranks which are learnt in a purely data-driven manner.
arXiv Detail & Related papers (2023-10-29T21:10:38Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
We employ computer vision techniques of AI to design a non-invasive load monitoring method for smart electric energy management.
We propose to recognize all electric loads from color feature images using a U-shape deep neural network with multi-scale feature extraction and attention mechanism.
arXiv Detail & Related papers (2023-08-08T04:52:19Z) - Deep Reinforcement Learning-Based Battery Conditioning Hierarchical V2G
Coordination for Multi-Stakeholder Benefits [3.4529246211079645]
This study proposes a multi-stakeholder hierarchical V2G coordination based on deep reinforcement learning (DRL) and the Proof of Stake algorithm.
The multi-stakeholders include the power grid, EV aggregators (EVAs), and users, and the proposed strategy can achieve multi-stakeholder benefits.
arXiv Detail & Related papers (2023-08-01T01:19:56Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
In current control strategies and optimization algorithms, most of them rely on receiving information from real-time feedback.
We propose an engineer-friendly control strategy framework that embeds dynamic prior knowledge from building system characteristics simultaneously for system control.
We tested it in a case for heating system control with typical control strategies, which shows our framework owns a further energy-saving potential of 15%.
arXiv Detail & Related papers (2023-01-23T09:07:07Z) - MERLIN: Multi-agent offline and transfer learning for occupant-centric
energy flexible operation of grid-interactive communities using smart meter
data and CityLearn [0.0]
Decarbonization of buildings presents new challenges for the reliability of the electrical grid.
We propose the MERLIN framework and use a digital twin of a real-world grid-interactive residential community in CityLearn.
We show that independent RL-controllers for batteries improve building and district level compared to a reference by tailoring their policies to individual buildings.
arXiv Detail & Related papers (2022-12-31T21:37:14Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.