H-FLTN: A Privacy-Preserving Hierarchical Framework for Electric Vehicle Spatio-Temporal Charge Prediction
- URL: http://arxiv.org/abs/2502.18697v1
- Date: Tue, 25 Feb 2025 23:20:53 GMT
- Title: H-FLTN: A Privacy-Preserving Hierarchical Framework for Electric Vehicle Spatio-Temporal Charge Prediction
- Authors: Robert Marlin, Raja Jurdak, Alsharif Abuadbba,
- Abstract summary: Electric Vehicles (EVs) pose critical challenges for energy providers, particularly in predicting charging time (temporal prediction)<n>This paper introduces the Hierarchical Learning Transformer Network framework to address these challenges.<n>Its integration into real-world smart city infrastructure enhances energy demand forecasting, resource allocation, and grid stability.
- Score: 8.183121832206556
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The widespread adoption of Electric Vehicles (EVs) poses critical challenges for energy providers, particularly in predicting charging time (temporal prediction), ensuring user privacy, and managing resources efficiently in mobility-driven networks. This paper introduces the Hierarchical Federated Learning Transformer Network (H-FLTN) framework to address these challenges. H-FLTN employs a three-tier hierarchical architecture comprising EVs, community Distributed Energy Resource Management Systems (DERMS), and the Energy Provider Data Centre (EPDC) to enable accurate spatio-temporal predictions of EV charging needs while preserving privacy. Temporal prediction is enhanced using Transformer-based learning, capturing complex dependencies in charging behavior. Privacy is ensured through Secure Aggregation, Additive Secret Sharing, and Peer-to-Peer (P2P) Sharing with Augmentation, which allow only secret shares of model weights to be exchanged while securing all transmissions. To improve training efficiency and resource management, H-FLTN integrates Dynamic Client Capping Mechanism (DCCM) and Client Rotation Management (CRM), ensuring that training remains both computationally and temporally efficient as the number of participating EVs increases. DCCM optimises client participation by limiting excessive computational loads, while CRM balances training contributions across epochs, preventing imbalanced participation. Our simulation results based on large-scale empirical vehicle mobility data reveal that DCCM and CRM reduce the training time complexity with increasing EVs from linear to constant. Its integration into real-world smart city infrastructure enhances energy demand forecasting, resource allocation, and grid stability, ensuring reliability and sustainability in future mobility ecosystems.
Related papers
- EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
This paper introduces EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management framework.
It enables user-centric and multi-objective energy management by allowing each prosumer to select from a range of personal management objectives.
The efficacy of EnergAIze was evaluated through case studies employing the CityLearn simulation framework.
arXiv Detail & Related papers (2024-04-02T23:16:17Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - An Efficient Distributed Multi-Agent Reinforcement Learning for EV
Charging Network Control [2.5477011559292175]
We introduce a decentralized Multi-agent Reinforcement Learning (MARL) charging framework that prioritizes the preservation of privacy for EV owners.
Our results demonstrate that the CTDE framework improves the performance of the charging network by reducing the network costs.
arXiv Detail & Related papers (2023-08-24T16:53:52Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
Electric vehicles (EVs) might stress distribution networks significantly, leaving their performance degraded and jeopardized stability.
Modern power grids require coordinated or smart'' charging strategies capable of optimizing EV charging scheduling in a scalable and efficient fashion.
We formulate a time-coupled binary optimization problem that maximizes EV users' total welfare gain while accounting for the network's available power capacity and stations' occupancy limits.
arXiv Detail & Related papers (2023-05-18T14:03:47Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - FedREP: Towards Horizontal Federated Load Forecasting for Retail Energy
Providers [1.1254693939127909]
We propose a novel horizontal privacy-preserving federated learning framework for energy load forecasting, namely FedREP.
We consider a federated learning system consisting of a control centre and multiple retailers by enabling multiple REPs to build a common, robust machine learning model without sharing data.
For forecasting, we use a state-of-the-art Long Short-Term Memory (LSTM) neural network due to its ability to learn long term sequences of observations.
arXiv Detail & Related papers (2022-03-01T04:16:19Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - PSML: A Multi-scale Time-series Dataset for Machine Learning in
Decarbonized Energy Grids [11.03026038752202]
PSML is a first-of-its-kind open-access multi-scale time-series dataset.
We present PSML to aid in the development of data-driven machine learning (ML) approaches towards reliable operation of future electric grids.
We envision this dataset will enable advances for ML in dynamic systems, while simultaneously allowing ML researchers to contribute towards carbon-neutral electricity and mobility.
arXiv Detail & Related papers (2021-10-12T20:18:49Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.