論文の概要: AI-Driven Frameworks for Enhancing Data Quality in Big Data Ecosystems: Error_Detection, Correction, and Metadata Integration
- arxiv url: http://arxiv.org/abs/2405.03870v1
- Date: Mon, 6 May 2024 21:36:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 16:07:44.124205
- Title: AI-Driven Frameworks for Enhancing Data Quality in Big Data Ecosystems: Error_Detection, Correction, and Metadata Integration
- Title(参考訳): ビッグデータエコシステムにおけるデータ品質向上のためのAI駆動フレームワーク:エラー検出、補正、メタデータ統合
- Authors: Widad Elouataoui,
- Abstract要約: この論文は、ビッグデータの品質を包括的に向上することを目的とした、新しい相互接続フレームワークセットを提案する。
まず,データ品質を正確に評価するために,新しい品質指標と重み付きスコアシステムを導入する。
第3に,AIモデルを用いた各種品質異常検出のための汎用フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread adoption of big data has ushered in a new era of data-driven decision-making, transforming numerous industries and sectors. However, the efficacy of these decisions hinges on the quality of the underlying data. Poor data quality can result in inaccurate analyses and deceptive conclusions. Managing the vast volume, velocity, and variety of data sources presents significant challenges, heightening the importance of addressing big data quality issues. While there has been increased attention from both academia and industry, current approaches often lack comprehensiveness and universality. They tend to focus on limited metrics, neglecting other dimensions of data quality. Moreover, existing methods are often context-specific, limiting their applicability across different domains. There is a clear need for intelligent, automated approaches leveraging artificial intelligence (AI) for advanced data quality corrections. To bridge these gaps, this Ph.D. thesis proposes a novel set of interconnected frameworks aimed at enhancing big data quality comprehensively. Firstly, we introduce new quality metrics and a weighted scoring system for precise data quality assessment. Secondly, we present a generic framework for detecting various quality anomalies using AI models. Thirdly, we propose an innovative framework for correcting detected anomalies through predictive modeling. Additionally, we address metadata quality enhancement within big data ecosystems. These frameworks are rigorously tested on diverse datasets, demonstrating their efficacy in improving big data quality. Finally, the thesis concludes with insights and suggestions for future research directions.
- Abstract(参考訳): ビッグデータの普及により、データ駆動型意思決定の新時代が到来し、多くの産業やセクターが変化した。
しかし、これらの決定の有効性は、基礎となるデータの品質に依存している。
不適切なデータ品質は、不正確な分析と偽りの結論をもたらす可能性がある。
膨大な量のデータソース、ベロシティ、さまざまなデータソースを管理することは、ビッグデータの品質問題に対処することの重要性を高める上で、大きな課題となる。
学術と産業の両方から注目が集まっているが、現在のアプローチは包括性と普遍性に欠けることが多い。
彼らは限られたメトリクスに集中し、データ品質の他の次元を無視する傾向があります。
さらに、既存のメソッドは、しばしばコンテキスト固有であり、異なるドメインにまたがる適用性を制限する。
高度なデータ品質の修正に人工知能(AI)を活用するインテリジェントで自動化されたアプローチの必要性は明らかである。
これらのギャップを埋めるために、この博士論文は、ビッグデータの品質を包括的に向上することを目的とした、新しい相互接続フレームワークセットを提案する。
まず,データ品質を正確に評価するために,新しい品質指標と重み付きスコアシステムを導入する。
第2に,AIモデルを用いた各種品質異常検出のための汎用フレームワークを提案する。
第3に,予測モデルを用いて検出された異常を補正する革新的なフレームワークを提案する。
さらに、ビッグデータエコシステム内のメタデータの品質向上にも取り組みます。
これらのフレームワークはさまざまなデータセットで厳格にテストされており、ビッグデータの品質を改善する上での有効性を実証している。
最後に、論文は将来の研究方向性についての洞察と提案で締めくくられる。
関連論文リスト
- Are AI Detectors Good Enough? A Survey on Quality of Datasets With Machine-Generated Texts [0.0]
AIフラグメントを備えた膨大な数の検出器とコレクションが出現し、いくつかの検出方法は認識品質を99.9%まで向上させた。
検出器は実際に非常に信頼性が高いのか、あるいは評価データセットの質が低いことから高いベンチマークスコアを得るのか?
本稿では,AI生成コンテンツ検出専用のコンペからのデータセットを体系的にレビューし,AI生成フラグメントを含むデータセットの品質を評価する手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T17:59:57Z) - A Theoretical Framework for AI-driven data quality monitoring in high-volume data environments [1.2753215270475886]
本稿では,高ボリューム環境におけるデータ品質維持の課題に対処するために,AIによるデータ品質監視システムに関する理論的枠組みを提案する。
本稿では,ビッグデータのスケール,速度,多様性の管理における従来の手法の限界について検討し,高度な機械学習技術を活用した概念的アプローチを提案する。
主なコンポーネントは、インテリジェントデータ取り込み層、適応前処理機構、コンテキスト認識機能抽出、AIベースの品質評価モジュールなどである。
論文 参考訳(メタデータ) (2024-10-11T07:06:36Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Data Readiness for AI: A 360-Degree Survey [0.9343816282846432]
粗悪な品質データは不正確で非効率なAIモデルを生成する。
データ品質の改善に多くの研究開発努力が費やされている。
本稿では、構造化データセットと非構造化データセットのためのAI(DRAI)メトリクスのためのデータ準備性の分類法を提案する。
論文 参考訳(メタデータ) (2024-04-08T15:19:57Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - QI2 -- an Interactive Tool for Data Quality Assurance [63.379471124899915]
欧州委員会による計画されたAI法では、データ品質に関する法的要件が規定されている。
複数のデータ品質面におけるデータ品質保証プロセスをサポートする新しいアプローチを導入する。
論文 参考訳(メタデータ) (2023-07-07T07:06:38Z) - Quality In / Quality Out: Assessing Data quality in an Anomaly Detection
Benchmark [0.13764085113103217]
同じベンチマークデータセット(異常検出のためのフローベースリアルタイムデータセットであるUGR'16)に対する比較的小さな変更は、考慮した機械学習技術よりも、モデルパフォーマンスに著しく影響することを示します。
この結果から,自律型ネットワークにおけるデータ品質評価と最適化技術に,より注意を払う必要があることが示唆された。
論文 参考訳(メタデータ) (2023-05-31T12:03:12Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
データ拡張の背景、レビューされたデータ拡張技術の新しい包括的分類法、および各技術の強さと弱点(可能ならば)を提供する。
また、画像分類、オブジェクト検出、セマンティックセグメンテーションなどの3つの一般的なコンピュータビジョンタスクに対して、データ拡張効果の総合的な結果を提供する。
論文 参考訳(メタデータ) (2023-01-07T11:37:32Z) - Enabling Synthetic Data adoption in regulated domains [1.9512796489908306]
Model-CentricからData-Centricへの転換は、アルゴリズムよりもデータとその品質に重点を置いている。
特に、高度に規制されたシナリオにおける情報のセンシティブな性質を考慮する必要がある。
このようなコンウンドラムをバイパスする巧妙な方法は、生成プロセスから得られたデータであるSynthetic Dataに依存し、実際のデータプロパティを学習する。
論文 参考訳(メタデータ) (2022-04-13T10:53:54Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。