論文の概要: ESIHGNN: Event-State Interactions Infused Heterogeneous Graph Neural Network for Conversational Emotion Recognition
- arxiv url: http://arxiv.org/abs/2405.03960v1
- Date: Tue, 7 May 2024 02:46:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:38:26.361180
- Title: ESIHGNN: Event-State Interactions Infused Heterogeneous Graph Neural Network for Conversational Emotion Recognition
- Title(参考訳): ESIHGNN:会話感情認識のための不均一グラフニューラルネットワークのイベント-状態相互作用
- Authors: Xupeng Zha, Huan Zhao, Zixing Zhang,
- Abstract要約: 既存のグラフベースの手法は主に会話コンテキストを理解するためのイベントインタラクションに焦点を当てている。
異種グラフニューラルネットワーク(ESIHGNN)を用いたイベント-状態相互作用というグラフに基づく新しい手法を提案する。
ESIHGNNは話者の感情状態を取り入れ、会話をモデル化するための異種事象状態相互作用グラフを構築する。
- 参考スコア(独自算出の注目度): 16.800240197327923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational Emotion Recognition (CER) aims to predict the emotion expressed by an utterance (referred to as an ``event'') during a conversation. Existing graph-based methods mainly focus on event interactions to comprehend the conversational context, while overlooking the direct influence of the speaker's emotional state on the events. In addition, real-time modeling of the conversation is crucial for real-world applications but is rarely considered. Toward this end, we propose a novel graph-based approach, namely Event-State Interactions infused Heterogeneous Graph Neural Network (ESIHGNN), which incorporates the speaker's emotional state and constructs a heterogeneous event-state interaction graph to model the conversation. Specifically, a heterogeneous directed acyclic graph neural network is employed to dynamically update and enhance the representations of events and emotional states at each turn, thereby improving conversational coherence and consistency. Furthermore, to further improve the performance of CER, we enrich the graph's edges with external knowledge. Experimental results on four publicly available CER datasets show the superiority of our approach and the effectiveness of the introduced heterogeneous event-state interaction graph.
- Abstract(参考訳): 会話感情認識(英語: Conversational Emotion Recognition, CER)とは、会話中に発話によって表現される感情を予測することである。
既存のグラフベースの手法は、主に会話の文脈を理解するためのイベントインタラクションに焦点を当て、話者の感情状態がイベントに直接影響することを見落としている。
加えて、会話のリアルタイムモデリングは現実世界のアプリケーションには不可欠であるが、考慮されることは稀である。
そこで本研究では,話者の感情状態を組み込んだ異種事象-状態相互作用グラフを構築し,会話をモデル化する,イベント-状態相互作用を注入したヘテロジニアスグラフニューラルネットワーク(ESIHGNN)を提案する。
具体的には、不均一な非巡回グラフニューラルネットワークを用いて、各ターンにおける事象や感情状態の表現を動的に更新し、拡張し、会話の一貫性と一貫性を向上させる。
さらに、CERの性能をさらに向上するために、グラフのエッジを外部知識で強化する。
公開された4つのCERデータセットに対する実験結果から,我々のアプローチの優位性と,導入した異種事象状態相互作用グラフの有効性が示された。
関連論文リスト
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - Nonverbal Interaction Detection [83.40522919429337]
この研究は、社会的文脈における人間の非言語的相互作用を理解するという新たな課題に対処する。
我々はNVIと呼ばれる新しい大規模データセットを寄贈し、人間とそれに対応する社会グループのための境界ボックスを含むように細心の注意を払ってアノテートする。
第2に,非言語的インタラクション検出のための新たなタスクNVI-DETを構築し,画像から三つ子を識別する。
第3に,非言語相互作用検出ハイパーグラフ (NVI-DEHR) を提案する。
論文 参考訳(メタデータ) (2024-07-11T02:14:06Z) - Efficient Long-distance Latent Relation-aware Graph Neural Network for Multi-modal Emotion Recognition in Conversations [8.107561045241445]
会話におけるマルチモーダル感情認識のための高効率長距離遅延関係認識グラフニューラルネットワーク(ELR-GNN)を提案する。
ELR-GNNはIEMOCAPとMELDのベンチマークで最先端のパフォーマンスを実現し、それぞれ実行時間を52%と35%削減した。
論文 参考訳(メタデータ) (2024-06-27T15:54:12Z) - DER-GCN: Dialogue and Event Relation-Aware Graph Convolutional Neural Network for Multimodal Dialogue Emotion Recognition [14.639340916340801]
本稿では,多モーダル感情認識(DER-GCN)のための新しい対話・イベント関係対応グラフ畳み込みニューラルネットワークを提案する。
話者間の対話関係をモデル化し、潜在イベント関係情報をキャプチャする。
DER-GCNモデルの有効性を検証したIEMOCAPおよびMELDベンチマークデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-12-17T01:49:40Z) - Conversation Understanding using Relational Temporal Graph Neural
Networks with Auxiliary Cross-Modality Interaction [2.1261712640167856]
感情認識は人間の会話理解にとって重要な課題である。
我々は,CORECT(Cross-Modality Interaction)を用いた入力時間グラフニューラルネットワークを提案する。
CORECTは会話レベルの対話と発話レベルの時間的依存関係を効果的にキャプチャする。
論文 参考訳(メタデータ) (2023-11-08T07:46:25Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Emotion Dynamics Modeling via BERT [7.3785751096660555]
対話型感情ダイナミクスのインターロケータ間およびインターロケータ間依存性をキャプチャするBERTベースの一連のモデルを開発する。
提案したモデルはそれぞれ,最先端のベースラインよりも約5%,10%改善できる。
論文 参考訳(メタデータ) (2021-04-15T05:58:48Z) - GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating
Open-Domain Dialogue Systems [133.13117064357425]
自動対話評価のためのグラフ強調表現のための新しい評価指標GRADEを提案する。
具体的には、対話コヒーレンスを評価するために、粗粒度発話レベルの文脈化表現と細粒度トピックレベルのグラフ表現の両方を組み込んでいる。
実験の結果,GRADEは多様な対話モデルの測定において,他の最先端の指標よりも優れていた。
論文 参考訳(メタデータ) (2020-10-08T14:07:32Z) - Dialogue Relation Extraction with Document-level Heterogeneous Graph
Attention Networks [21.409522845011907]
対話関係抽出(DRE)は,多人数対話で言及される2つのエンティティ間の関係を検出することを目的としている。
本稿では,グラフが有意に接続された話者,エンティティ,エンティティタイプ,発話ノードを含むDREのためのグラフ注意ネットワーク方式を提案する。
このグラフに基づくアプローチは,対話における異なるエンティティペア間の関係を効果的に捉え,最先端のアプローチよりも優れていることを実証的に示す。
論文 参考訳(メタデータ) (2020-09-10T18:51:48Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。