Unified End-to-End V2X Cooperative Autonomous Driving
- URL: http://arxiv.org/abs/2405.03971v1
- Date: Tue, 7 May 2024 03:01:40 GMT
- Title: Unified End-to-End V2X Cooperative Autonomous Driving
- Authors: Zhiwei Li, Bozhen Zhang, Lei Yang, Tianyu Shen, Nuo Xu, Ruosen Hao, Weiting Li, Tao Yan, Huaping Liu,
- Abstract summary: UniE2EV2X is a V2X-integrated end-to-end autonomous driving system that consolidates key driving modules within a unified network.
The framework employs a deformable attention-based data fusion strategy, effectively facilitating cooperation between vehicles and infrastructure.
We implement the UniE2EV2X framework on the challenging DeepAccident, a simulation dataset designed for V2X cooperative driving.
- Score: 21.631099800753795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: V2X cooperation, through the integration of sensor data from both vehicles and infrastructure, is considered a pivotal approach to advancing autonomous driving technology. Current research primarily focuses on enhancing perception accuracy, often overlooking the systematic improvement of accident prediction accuracy through end-to-end learning, leading to insufficient attention to the safety issues of autonomous driving. To address this challenge, this paper introduces the UniE2EV2X framework, a V2X-integrated end-to-end autonomous driving system that consolidates key driving modules within a unified network. The framework employs a deformable attention-based data fusion strategy, effectively facilitating cooperation between vehicles and infrastructure. The main advantages include: 1) significantly enhancing agents' perception and motion prediction capabilities, thereby improving the accuracy of accident predictions; 2) ensuring high reliability in the data fusion process; 3) superior end-to-end perception compared to modular approaches. Furthermore, We implement the UniE2EV2X framework on the challenging DeepAccident, a simulation dataset designed for V2X cooperative driving.
Related papers
- V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models [13.716889927164383]
This paper introduces V2X-VLM, an innovative E2E vehicle-infrastructure cooperative autonomous driving (VICAD) framework with Vehicle-to-Everything (V2X) systems and large vision-language models (VLMs)
V2X-VLM is designed to enhance situational awareness, decision-making, and ultimate trajectory planning by integrating multimodel data from vehicle-mounted cameras, infrastructure sensors, and textual information.
Evaluations on the DAIR-V2X dataset show that V2X-VLM outperforms state-of-the-art cooperative autonomous driving methods.
arXiv Detail & Related papers (2024-08-17T16:42:13Z) - Towards Collaborative Autonomous Driving: Simulation Platform and End-to-End System [35.447617290190294]
Vehicle-to-everything-aided autonomous driving (V2X-AD) has a huge potential to provide a safer driving solution.
We present V2Xverse, a comprehensive simulation platform for collaborative autonomous driving.
We introduce CoDriving, a novel end-to-end collaborative driving system.
arXiv Detail & Related papers (2024-04-15T06:33:32Z) - End-to-End Autonomous Driving through V2X Cooperation [23.44597411612664]
We introduce UniV2X, a pioneering cooperative autonomous driving framework.
UniV2X seamlessly integrates all key driving modules across diverse views into a unified network.
arXiv Detail & Related papers (2024-03-31T15:22:11Z) - V2X Cooperative Perception for Autonomous Driving: Recent Advances and Challenges [32.11627955649814]
Vehicle-to-everything (V2X) cooperative perception (CP) allows vehicles to share perception data, thereby enhancing situational awareness and overcoming the limitations of the sensing ability of individual vehicles.
V2X CP is crucial for extending perception range, improving accuracy, and strengthening the decision-making and control capabilities of autonomous vehicles in complex environments.
This paper provides a comprehensive survey of recent advances in V2X CP, introducing mathematical models of CP processes across various collaboration strategies.
arXiv Detail & Related papers (2023-10-05T13:19:48Z) - V2X-Lead: LiDAR-based End-to-End Autonomous Driving with
Vehicle-to-Everything Communication Integration [4.166623313248682]
This paper presents a LiDAR-based end-to-end autonomous driving method with Vehicle-to-Everything (V2X) communication integration.
The proposed method aims to handle imperfect partial observations by fusing the onboard LiDAR sensor and V2X communication data.
arXiv Detail & Related papers (2023-09-26T20:26:03Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
We build a holistic attention model, namely V2X-ViT, to fuse information across on-road agents.
V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention.
To validate our approach, we create a large-scale V2X perception dataset.
arXiv Detail & Related papers (2022-03-20T20:18:25Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.