論文の概要: An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2405.04017v1
- Date: Tue, 7 May 2024 05:29:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:18:57.105143
- Title: An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks
- Title(参考訳): 深部ニューラルネットワークを用いた時間差学習の有限時間解析の改良
- Authors: Zhifa Ke, Zaiwen Wen, Junyu Zhang,
- Abstract要約: 一般の$L$層ニューラルネットワークを用いて, ニューラルTD法の非漸近解析を改良した。
新しい証明技術が開発され、新しい$tildemathcalO(epsilon-1)$サンプルの複雑さが引き出された。
- 参考スコア(独自算出の注目度): 11.925232472331494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal difference (TD) learning algorithms with neural network function parameterization have well-established empirical success in many practical large-scale reinforcement learning tasks. However, theoretical understanding of these algorithms remains challenging due to the nonlinearity of the action-value approximation. In this paper, we develop an improved non-asymptotic analysis of the neural TD method with a general $L$-layer neural network. New proof techniques are developed and an improved new $\tilde{\mathcal{O}}(\epsilon^{-1})$ sample complexity is derived. To our best knowledge, this is the first finite-time analysis of neural TD that achieves an $\tilde{\mathcal{O}}(\epsilon^{-1})$ complexity under the Markovian sampling, as opposed to the best known $\tilde{\mathcal{O}}(\epsilon^{-2})$ complexity in the existing literature.
- Abstract(参考訳): ニューラルネットワーク機能パラメータ化を用いた時間差学習アルゴリズムは,多くの大規模強化学習タスクにおいて実証的な成功を収めている。
しかし、これらのアルゴリズムの理論的理解は、作用値近似の非線形性のため、依然として困難である。
本稿では,一般の$L$層ニューラルネットワークを用いたニューラルTD法の非漸近解析を改良した。
新しい証明手法が開発され、新しい$\tilde{\mathcal{O}}(\epsilon^{-1})$サンプルの複雑さが導出される。
我々の知る限り、これはマルコフサンプリングの下での$\tilde{\mathcal{O}}(\epsilon^{-1})$複雑性を達成するニューラルなTDの有限時間解析であり、既存の文献における$\tilde{\mathcal{O}}(\epsilon^{-2})$複雑性とは対照的である。
関連論文リスト
- Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent [83.85536329832722]
勾配勾配降下(SGD)は,$d$次元ハイパーキューブ上の$k$パリティ問題を効率的に解くことができることを示す。
次に、SGDでトレーニングされたニューラルネットワークがどのようにして、小さな統計的エラーで$k$-parityの問題を解決するかを実証する。
論文 参考訳(メタデータ) (2024-04-18T17:57:53Z) - On the Performance of Temporal Difference Learning With Neural Networks [20.721853144434743]
TD Learningは、関数近似にニューラルネットワークを用いる政策評価のための近似時間差法である。
近似バウンダリが$O(epsilon) + tildeO(1/sqrtm)$であることを示す。
論文 参考訳(メタデータ) (2023-12-08T22:34:29Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Gauss-Newton Temporal Difference Learning with Nonlinear Function Approximation [11.925232472331494]
非線形関数近似を用いたQラーニング問題を解くため,ガウスニュートン時間差分法(GNTD)学習法を提案する。
各イテレーションにおいて、我々の手法は1つのガウスニュートン(GN)ステップを踏んで平均二乗ベルマン誤差(MSBE)の変種を最適化する。
いくつかのRLベンチマークにおいて、GNTDはTD型よりも高い報酬と高速な収束を示す。
論文 参考訳(メタデータ) (2023-02-25T14:14:01Z) - Training Overparametrized Neural Networks in Sublinear Time [14.918404733024332]
ディープラーニングには膨大な計算とエネルギーのコストが伴う。
探索木の小さな部分集合として、二分ニューラルネットワークの新しいサブセットを示し、それぞれが探索木のサブセット(Ds)に対応する。
我々はこの見解が深層ネットワーク(Ds)の分析解析にさらに応用できると考えている。
論文 参考訳(メタデータ) (2022-08-09T02:29:42Z) - Sample Complexity and Overparameterization Bounds for Projection-Free
Neural TD Learning [38.730333068555275]
神経td学習の既存の解析は、無限幅解析または(ランダム)コンパクト集合内のネットワークパラメータの制約に依存している。
poly(overlinenu,1/epsilon)$以上の幅の2層reluネットワークを備えたプロジェクションフリーtd学習は、$poly(overlinenu,1/epsilon)$イテレーションまたはサンプルを与えられたエラー$epsilon$で真の値関数に収束する。
論文 参考訳(メタデータ) (2021-03-02T01:05:19Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
強化学習のコアにおける探索・探索トレードオフについて検討する。
特に、関数クラス $mathcalF$ の複雑さが関数の複雑さを特徴づけていることを証明する。
私たちの後悔の限界はエピソードの数とは無関係です。
論文 参考訳(メタデータ) (2020-11-09T18:32:22Z) - Finite-Time Analysis for Double Q-learning [50.50058000948908]
二重Q-ラーニングのための非漸近的有限時間解析を初めて提供する。
同期と非同期の二重Q-ラーニングの両方が,グローバル最適化の$epsilon$-accurate近辺に収束することが保証されていることを示す。
論文 参考訳(メタデータ) (2020-09-29T18:48:21Z) - Random Vector Functional Link Networks for Function Approximation on Manifolds [8.535815777849786]
ランダムな入力-隠蔽層重みとバイアスを持つ単一層ニューラルネットが実際に成功していることを示す。
さらに、このランダム化されたニューラルネットワークアーキテクチャをユークリッド空間の滑らかでコンパクトな部分多様体上の近似関数に適用する。
論文 参考訳(メタデータ) (2020-07-30T23:50:44Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Backward Feature Correction: How Deep Learning Performs Deep
(Hierarchical) Learning [66.05472746340142]
本稿では,SGD による階層的学習 _efficiently_ と _automatically_ を学習目標として,多層ニューラルネットワークがどのように行うかを分析する。
我々は、下位機能のエラーを上位層と共にトレーニングする際に自動的に修正できる"後方特徴補正"と呼ばれる新しい原則を確立する。
論文 参考訳(メタデータ) (2020-01-13T17:28:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。