Locally Differentially Private In-Context Learning
- URL: http://arxiv.org/abs/2405.04032v2
- Date: Wed, 8 May 2024 17:10:23 GMT
- Title: Locally Differentially Private In-Context Learning
- Authors: Chunyan Zheng, Keke Sun, Wenhao Zhao, Haibo Zhou, Lixin Jiang, Shaoyang Song, Chunlai Zhou,
- Abstract summary: Large pretrained language models (LLMs) have shown surprising In-Context Learning (ICL) ability.
This paper proposes a locally differentially private framework of in-context learning (LDP-ICL)
Considering the mechanisms of in-context learning in Transformers by gradient descent, we provide an analysis of the trade-off between privacy and utility in such LDP-ICL.
- Score: 8.659575019965152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large pretrained language models (LLMs) have shown surprising In-Context Learning (ICL) ability. An important application in deploying large language models is to augment LLMs with a private database for some specific task. The main problem with this promising commercial use is that LLMs have been shown to memorize their training data and their prompt data are vulnerable to membership inference attacks (MIA) and prompt leaking attacks. In order to deal with this problem, we treat LLMs as untrusted in privacy and propose a locally differentially private framework of in-context learning(LDP-ICL) in the settings where labels are sensitive. Considering the mechanisms of in-context learning in Transformers by gradient descent, we provide an analysis of the trade-off between privacy and utility in such LDP-ICL for classification. Moreover, we apply LDP-ICL to the discrete distribution estimation problem. In the end, we perform several experiments to demonstrate our analysis results.
Related papers
- Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - Formality is Favored: Unraveling the Learning Preferences of Large Language Models on Data with Conflicting Knowledge [55.65162959527848]
Large language models have shown excellent performance on many knowledge-intensive tasks.
However, pretraining data tends to contain misleading and even conflicting information.
This study systematically analyze LLMs' learning preferences for data with conflicting knowledge.
arXiv Detail & Related papers (2024-10-07T06:49:41Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
arXiv Detail & Related papers (2024-08-23T01:37:29Z) - Soft Prompting for Unlearning in Large Language Models [11.504012974208466]
This work focuses on investigating machine unlearning for Large Language Models motivated by data protection regulations.
We propose a framework textbfSoft textbfPrompting for textbfUntextbflearning (SPUL)
We conduct a rigorous evaluation of the proposed method and our results indicate that SPUL can significantly improve the trade-off between utility and forgetting.
arXiv Detail & Related papers (2024-06-17T19:11:40Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning [32.52811740662061]
This article introduces DP-LoRA, a novel federated learning algorithm tailored for large language models (LLMs)
DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training.
arXiv Detail & Related papers (2023-12-29T06:50:38Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Privacy-Preserving In-Context Learning for Large Language Models [36.13851291571231]
In-context learning (ICL) is an important capability of Large Language Models (LLMs)
LLMs's responses may leak the sensitive private information contained in in-context exemplars.
We propose Differentially Private In-context Learning (DP-ICL), a general paradigm for privatizing ICL tasks.
arXiv Detail & Related papers (2023-05-02T17:52:58Z) - Differentially Private Decoding in Large Language Models [14.221692239892207]
We propose a simple, easy to interpret, and computationally lightweight perturbation mechanism to be applied to an already trained model at the decoding stage.
Our perturbation mechanism is model-agnostic and can be used in conjunction with any Large Language Model.
arXiv Detail & Related papers (2022-05-26T20:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.