論文の概要: DMOFC: Discrimination Metric-Optimized Feature Compression
- arxiv url: http://arxiv.org/abs/2405.04044v1
- Date: Tue, 7 May 2024 06:29:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:09:09.454256
- Title: DMOFC: Discrimination Metric-Optimized Feature Compression
- Title(参考訳): DMOFC: 識別基準の最適化された特徴圧縮
- Authors: Changsheng Gao, Yiheng Jiang, Li Li, Dong Liu, Feng Wu,
- Abstract要約: 再構成された特徴の特徴識別性を維持するため,特徴圧縮のための識別基準を導入する。
識別基準と原特徴の識別可能性の関係について検討する。
- 参考スコア(独自算出の注目度): 38.022917871249874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature compression, as an important branch of video coding for machines (VCM), has attracted significant attention and exploration. However, the existing methods mainly focus on intra-feature similarity, such as the Mean Squared Error (MSE) between the reconstructed and original features, while neglecting the importance of inter-feature relationships. In this paper, we analyze the inter-feature relationships, focusing on feature discriminability in machine vision and underscoring its significance in feature compression. To maintain the feature discriminability of reconstructed features, we introduce a discrimination metric for feature compression. The discrimination metric is designed to ensure that the distance between features of the same category is smaller than the distance between features of different categories. Furthermore, we explore the relationship between the discrimination metric and the discriminability of the original features. Experimental results confirm the effectiveness of the proposed discrimination metric and reveal there exists a trade-off between the discrimination metric and the discriminability of the original features.
- Abstract(参考訳): 機械用ビデオ符号化(VCM)の重要な分野として機能圧縮が注目されている。
しかし、既存の手法は主に機能間関係の重要性を無視しつつ、再建された特徴とオリジナルの特徴の間の平均正方形誤差(MSE)のような機能内類似性に重点を置いている。
本稿では,機能間関係を解析し,マシンビジョンにおける特徴識別性に着目し,特徴圧縮におけるその意義を強調する。
再構成された特徴の特徴識別性を維持するために,特徴圧縮のための識別基準を導入する。
判別基準は、同一カテゴリの特徴間の距離が、異なるカテゴリの特徴間の距離よりも小さいことを保証するように設計されている。
さらに,識別基準と原特徴の識別可能性との関係について検討した。
実験により,提案手法の有効性を確認し,識別基準と原特徴の識別性との間にトレードオフが存在することを明らかにした。
関連論文リスト
- On Learning Discriminative Features from Synthesized Data for Self-Supervised Fine-Grained Visual Recognition [21.137498023391178]
自己監視学習(SSL)は、様々なタスクにわたる視覚的表現を取得するための顕著なアプローチとなっている。
我々は,SSLの視覚的認識に不可欠な重要な識別的特徴を抽出する能力を向上する新たな戦略を導入する。
このアプローチは、FGVRに不可欠な差別的特徴に焦点を合わせるために、合成データペアを作成する。
論文 参考訳(メタデータ) (2024-07-19T21:43:19Z) - Large Margin Discriminative Loss for Classification [3.3975558777609915]
本稿では,Deep Learning の文脈において,大きなマージンを持つ新たな識別的損失関数を提案する。
この損失は、クラス内コンパクト性とクラス間分離性によって表されるニューラルネットの識別力を高める。
論文 参考訳(メタデータ) (2024-05-28T18:10:45Z) - High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning [54.86882315023791]
一般化ゼロショット学習(HDAFL)のための高識別属性特徴学習(High-Discriminative Attribute Feature Learning)という革新的な手法を提案する。
HDAFLは複数の畳み込みカーネルを使用して、画像の属性と高い相関性を持つ識別領域を自動的に学習する。
また、属性間の識別能力を高めるために、Transformerベースの属性識別エンコーダを導入する。
論文 参考訳(メタデータ) (2024-04-07T13:17:47Z) - Information Theoretic Measures for Fairness-aware Feature Selection [27.06618125828978]
我々は,特徴の精度と識別的影響に関する情報理論に基づく,公平性を考慮した特徴選択のためのフレームワークを開発する。
具体的には、この機能が正確性や非差別的判断にどのように影響するかを定量化する、各機能に対する公平性ユーティリティスコアを設計することを目的としています。
論文 参考訳(メタデータ) (2021-06-01T20:11:54Z) - A-FMI: Learning Attributions from Deep Networks via Feature Map
Importance [58.708607977437794]
勾配に基づくアトリビューション法は畳み込みニューラルネットワーク(CNN)の理解を助けることができる
帰属特徴の冗長性と勾配飽和問題は、帰属方法がまだ直面する課題である。
本稿では,各特徴マップの寄与度を高めるための新しい概念,特徴マップ重要度 (FMI) と,勾配飽和問題に対処するためのFMIによる新しい帰属法を提案する。
論文 参考訳(メタデータ) (2021-04-12T14:54:44Z) - Leaning Compact and Representative Features for Cross-Modality Person
Re-Identification [18.06382007908855]
本稿では,クロスモダリティ可視赤外人物再識別(vi re-id)タスクに注目する。
提案手法は他の最も先進的な手法よりも印象的な性能で優れている。
論文 参考訳(メタデータ) (2021-03-26T01:53:16Z) - The role of feature space in atomistic learning [62.997667081978825]
物理的にインスパイアされた記述子は、原子論シミュレーションへの機械学習技術の応用において重要な役割を果たしている。
異なる記述子のセットを比較するためのフレームワークを導入し、メトリクスとカーネルを使ってそれらを変換するさまざまな方法を紹介します。
原子密度のn-体相関から構築した表現を比較し,低次特徴の利用に伴う情報損失を定量的に評価した。
論文 参考訳(メタデータ) (2020-09-06T14:12:09Z) - Rethink Maximum Mean Discrepancy for Domain Adaptation [77.2560592127872]
本論文は,(1)最大平均距離の最小化は,それぞれソースとクラス内距離の最大化に等しいが,その差を暗黙の重みと共同で最小化し,特徴判別性は低下する,という2つの本質的な事実を理論的に証明する。
いくつかのベンチマークデータセットの実験は、理論的な結果の有効性を証明しただけでなく、我々のアプローチが比較した最先端手法よりも大幅に向上できることを実証した。
論文 参考訳(メタデータ) (2020-07-01T18:25:10Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z) - Disentanglement for Discriminative Visual Recognition [7.954325638519141]
この章では、有害な要因を、タスク関連/非関連なセマンティックなバリエーションと、特定されていない潜伏的なバリエーションとして体系的に要約する。
統合された2つの完全に接続されたレイヤブランチフレームワークにおいて、ディープメトリックロスとソフトマックスロスを組み合わせることで、より優れたFER性能を実現することができる。
このフレームワークは、照明、化粧、変装耐性顔認証、顔属性認識など、一連のタスクにおいて最高のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-14T06:10:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。