Binarized Simplicial Convolutional Neural Networks
- URL: http://arxiv.org/abs/2405.04098v2
- Date: Wed, 23 Oct 2024 07:57:41 GMT
- Title: Binarized Simplicial Convolutional Neural Networks
- Authors: Yi Yan, Ercan E. Kuruoglu,
- Abstract summary: We propose a novel neural network architecture on simplicial complexes named Binarized Simplicial Convolutional Neural Networks (Bi-SCNN)
Compared to the previous Simplicial Convolutional Neural Networks, the reduced model complexity of Bi-SCNN shortens the execution time without sacrificing the prediction performance.
Experiments with real-world citation and ocean-drifter data confirmed that our proposed Bi-SCNN is efficient and accurate.
- Score: 6.069611493148632
- License:
- Abstract: Graph Neural Networks have a limitation of solely processing features on graph nodes, neglecting data on high-dimensional structures such as edges and triangles. Simplicial Convolutional Neural Networks (SCNN) represent higher-order structures using simplicial complexes to break this limitation albeit still lacking time efficiency. In this paper, we propose a novel neural network architecture on simplicial complexes named Binarized Simplicial Convolutional Neural Networks (Bi-SCNN) based on the combination of simplicial convolution with a binary-sign forward propagation strategy. The usage of the Hodge Laplacian on a binary-sign forward propagation enables Bi-SCNN to efficiently and effectively represent simplicial features that have higher-order structures than traditional graph node representations. Compared to the previous Simplicial Convolutional Neural Networks, the reduced model complexity of Bi-SCNN shortens the execution time without sacrificing the prediction performance and is less prone to the over-smoothing effect. Experimenting with real-world citation and ocean-drifter data confirmed that our proposed Bi-SCNN is efficient and accurate.
Related papers
- Non-convolutional Graph Neural Networks [46.79328529882998]
We design a simple graph learning module entirely free of convolution operators, coined random walk with unifying memory (RUM) neural network.
RUM achieves competitive performance, but is also robust, memory-efficient, scalable, and faster than the simplest convolutional GNNs.
arXiv Detail & Related papers (2024-07-31T21:29:26Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Simplicial Attention Networks [4.401427499962144]
Simplicial Neural Networks (SNNs) naturally model interactions by performing message passing on simplicial complexes.
We propose Simplicial Attention Networks (SAT), a new type of simplicial network that dynamically weighs the interactions between neighbouring simplicies.
We demonstrate that SAT outperforms existent convolutional SNNs and GNNs in two image and trajectory classification tasks.
arXiv Detail & Related papers (2022-04-20T13:41:50Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Bi-GCN: Binary Graph Convolutional Network [57.733849700089955]
We propose a Binary Graph Convolutional Network (Bi-GCN), which binarizes both the network parameters and input node features.
Our Bi-GCN can reduce the memory consumption by an average of 30x for both the network parameters and input data, and accelerate the inference speed by an average of 47x.
arXiv Detail & Related papers (2020-10-15T07:26:23Z) - Simplicial Neural Networks [0.0]
We present simplicial neural networks (SNNs)
SNNs are a generalization of graph neural networks to data that live on a class of topological spaces called simplicial complexes.
We test the SNNs on the task of imputing missing data on coauthorship complexes.
arXiv Detail & Related papers (2020-10-07T20:15:01Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.