Non-convolutional Graph Neural Networks
- URL: http://arxiv.org/abs/2408.00165v3
- Date: Sun, 29 Sep 2024 00:15:57 GMT
- Title: Non-convolutional Graph Neural Networks
- Authors: Yuanqing Wang, Kyunghyun Cho,
- Abstract summary: We design a simple graph learning module entirely free of convolution operators, coined random walk with unifying memory (RUM) neural network.
RUM achieves competitive performance, but is also robust, memory-efficient, scalable, and faster than the simplest convolutional GNNs.
- Score: 46.79328529882998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rethink convolution-based graph neural networks (GNN) -- they characteristically suffer from limited expressiveness, over-smoothing, and over-squashing, and require specialized sparse kernels for efficient computation. Here, we design a simple graph learning module entirely free of convolution operators, coined random walk with unifying memory (RUM) neural network, where an RNN merges the topological and semantic graph features along the random walks terminating at each node. Relating the rich literature on RNN behavior and graph topology, we theoretically show and experimentally verify that RUM attenuates the aforementioned symptoms and is more expressive than the Weisfeiler-Lehman (WL) isomorphism test. On a variety of node- and graph-level classification and regression tasks, RUM not only achieves competitive performance, but is also robust, memory-efficient, scalable, and faster than the simplest convolutional GNNs.
Related papers
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Graph neural networks and non-commuting operators [4.912318087940015]
We develop a limit theory of graphon-tuple neural networks and use it to prove a universal transferability theorem.
Our theoretical results extend well-known transferability theorems for GNNs to the case of several simultaneous graphs.
We derive a training procedure that provably enforces the stability of the resulting model.
arXiv Detail & Related papers (2024-11-06T21:17:14Z) - Tensor-view Topological Graph Neural Network [16.433092191206534]
Graph neural networks (GNNs) have recently gained growing attention in graph learning.
Existing GNNs only use local information from a very limited neighborhood around each node.
We propose a novel Topological Graph Neural Network (TTG-NN), a class of simple yet effective deep learning.
Real data experiments show that the proposed TTG-NN outperforms 20 state-of-the-art methods on various graph benchmarks.
arXiv Detail & Related papers (2024-01-22T14:55:01Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Learning Graph Neural Networks with Approximate Gradient Descent [24.49427608361397]
Two types of graph neural networks (GNNs) are investigated, depending on whether labels are attached to nodes or graphs.
A comprehensive framework for designing and analyzing convergence of GNN training algorithms is developed.
The proposed algorithm guarantees a linear convergence rate to the underlying true parameters of GNNs.
arXiv Detail & Related papers (2020-12-07T02:54:48Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.