論文の概要: Refining Joint Text and Source Code Embeddings for Retrieval Task with Parameter-Efficient Fine-Tuning
- arxiv url: http://arxiv.org/abs/2405.04126v1
- Date: Tue, 7 May 2024 08:50:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 14:49:39.354681
- Title: Refining Joint Text and Source Code Embeddings for Retrieval Task with Parameter-Efficient Fine-Tuning
- Title(参考訳): パラメータ効率の良いファインチューニングによる検索タスクのための共同テキストとソースコードの埋め込み
- Authors: Karim Galliamov, Leila Khaertdinova, Karina Denisova,
- Abstract要約: そこで本研究では,それを利用した微調整フレームワークを提案する。
PEFT(Efficient Fine-Tuning)技術。
提案する微調整フレームワークは,最大で0.4%のパラメータをチューニングすることで,コードテキスト検索性能を向上させる可能性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The latest developments in Natural Language Processing (NLP) have demonstrated remarkable progress in a code-text retrieval problem. As the Transformer-based models used in this task continue to increase in size, the computational costs and time required for end-to- end fine-tuning become substantial. This poses a significant challenge for adapting and utilizing these models when computational resources are limited. Motivated by these concerns, we propose a fine-tuning frame- work that leverages Parameter-Efficient Fine-Tuning (PEFT) techniques. Moreover, we adopt contrastive learning objectives to improve the quality of bimodal representations learned by transformer models. Additionally, for PEFT methods we provide extensive benchmarking, the lack of which has been highlighted as a crucial problem in the literature. Based on the thorough experimentation with the CodeT5+ model conducted on two datasets, we demonstrate that the proposed fine-tuning framework has the potential to improve code-text retrieval performance by tuning only 0.4% parameters at most.
- Abstract(参考訳): 自然言語処理(NLP)の最近の進歩は、コードテキスト検索問題において顕著な進歩を見せている。
このタスクで使用されるTransformerベースのモデルのサイズが増加し続けるにつれて、エンドツーエンドの微調整に必要な計算コストと時間が大きくなった。
これは、計算資源が限られている場合、これらのモデルを適応し、活用する上で大きな課題となる。
これらの懸念に乗じて,パラメータ効率の良いファインチューニング(PEFT)技術を活用した微調整フレームワークを提案する。
さらに,トランスフォーマーモデルにより学習されたバイモーダル表現の品質を向上させるために,コントラスト学習の目的を取り入れた。
さらに,PEFT法では広範なベンチマークを行い,その欠如が文献上重要な問題として強調されてきた。
2つのデータセットで実施したCodeT5+モデルによる徹底的な実験に基づいて、提案した微調整フレームワークは、最大0.4%のパラメータをチューニングすることで、コードテキスト検索性能を向上させる可能性を実証した。
関連論文リスト
- Visual Fourier Prompt Tuning [63.66866445034855]
本稿では,大規模なトランスフォーマーモデルに適用するための汎用的で効果的な方法として,Visual Fourier Prompt Tuning (VFPT)法を提案する。
提案手法では,高速フーリエ変換を即時埋め込みに取り入れ,空間領域情報と周波数領域情報の両方を調和的に検討する。
提案手法は,2つのベンチマークにおいて,現状のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-11-02T18:18:35Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Parameter Efficient Fine Tuning: A Comprehensive Analysis Across Applications [0.7421845364041001]
ディープラーニングの台頭は、コンピュータビジョン、自然言語処理、医療画像などの分野で大きな進歩を遂げている。
すべてのパラメータの調整を含む従来の微調整手法は、高い計算量とメモリ要求のために課題に直面している。
本稿では,計算効率と性能のバランスをとるためにパラメータを選択的に更新するPEFT(Efficient Fine-Tuning)手法について検討する。
論文 参考訳(メタデータ) (2024-04-21T02:26:15Z) - FT2Ra: A Fine-Tuning-Inspired Approach to Retrieval-Augmented Code Completion [24.964973946366335]
我々は,真の微調整を模倣することを目的とした新しい検索手法FT2Raを開発した。
FT2RaはUniXcoderの最良のベースライン方式に比べて精度が4.29%向上している。
論文 参考訳(メタデータ) (2024-04-02T01:42:15Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Parameter-Efficient Transfer Learning for Remote Sensing Image-Text
Retrieval [10.84733740863356]
本研究では,画像テキスト検索タスクにおいて,自然領域から RS 領域に視覚言語知識を伝達するためのパラメータ効率変換学習(PETL)手法について検討する。
提案モデルでは0.16万のトレーニングパラメータしか含まないため,完全微調整に比べて98.9%のパラメータ削減が可能である。
検索性能は従来の手法を7~13%超え,完全微調整よりも高い性能を達成している。
論文 参考訳(メタデータ) (2023-08-24T02:43:53Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
新しいタスクのための微調整された大規模な事前学習型ビジョンモデルは、パラメーター集約化が進んでいる。
本稿では,大規模なトランスフォーマーモデル適応のための効果的かつ効率的なビジュアルプロンプトチューニング(E2VPT)手法を提案する。
提案手法は2つのベンチマークにおいて,最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-07-25T19:03:21Z) - Extensive Evaluation of Transformer-based Architectures for Adverse Drug
Events Extraction [6.78974856327994]
逆イベント(ADE)抽出は、デジタル製薬における中核的なタスクの1つである。
我々は、非公式テキストを用いたADE抽出のための19のトランスフォーマーモデルを評価する。
分析の最後には、実験データから導出可能なテイクホームメッセージのリストを同定する。
論文 参考訳(メタデータ) (2023-06-08T15:25:24Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Transformer-based approaches to Sentiment Detection [55.41644538483948]
テキスト分類のための4種類の最先端変圧器モデルの性能について検討した。
RoBERTa変換モデルは82.6%のスコアでテストデータセット上で最高のパフォーマンスを示し、品質予測に非常に推奨されている。
論文 参考訳(メタデータ) (2023-03-13T17:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。