論文の概要: A Causal Explainable Guardrails for Large Language Models
- arxiv url: http://arxiv.org/abs/2405.04160v2
- Date: Wed, 4 Sep 2024 13:29:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 03:12:50.062429
- Title: A Causal Explainable Guardrails for Large Language Models
- Title(参考訳): 大規模言語モデルのための因果説明可能なガードレール
- Authors: Zhixuan Chu, Yan Wang, Longfei Li, Zhibo Wang, Zhan Qin, Kui Ren,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理において顕著な性能を示すが、その出力は望ましくない属性やバイアスを示すことができる。
LLMGuardrailは、因果解析と逆学習を組み込んだ新しいフレームワークで、偏りのない操舵表現を得る。
- 参考スコア(独自算出の注目度): 29.441292837667415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown impressive performance in natural language tasks, but their outputs can exhibit undesirable attributes or biases. Existing methods for steering LLMs toward desired attributes often assume unbiased representations and rely solely on steering prompts. However, the representations learned from pre-training can introduce semantic biases that influence the steering process, leading to suboptimal results. We propose LLMGuardrail, a novel framework that incorporates causal analysis and adversarial learning to obtain unbiased steering representations in LLMs. LLMGuardrail systematically identifies and blocks the confounding effects of biases, enabling the extraction of unbiased steering representations. Additionally, it includes an explainable component that provides insights into the alignment between the generated output and the desired direction. Experiments demonstrate LLMGuardrail's effectiveness in steering LLMs toward desired attributes while mitigating biases. Our work contributes to the development of safe and reliable LLMs that align with desired attributes.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理において顕著な性能を示すが、その出力は望ましくない属性やバイアスを示すことができる。
LLMを望ましい属性にステアリングするための既存の方法は、しばしばバイアスのない表現を仮定し、ステアリングプロンプトのみに依存する。
しかし、事前学習から学んだ表現は、ステアリングプロセスに影響を与える意味バイアスを導入し、最適以下の結果をもたらす。
因果解析と逆学習を取り入れた新しいフレームワーク LLMGuardrail を提案する。
LLMGuardrailは、バイアスの相反する効果を体系的に識別し、ブロックし、バイアスのないステアリング表現の抽出を可能にする。
さらに、生成した出力と所望の方向との整合性に関する洞察を提供する説明可能なコンポーネントも含まれている。
実験では、LLMを所望の属性に向けて操る上で、LLMGuardrailの有効性を実証し、バイアスを緩和する。
我々の研究は、望ましい属性に適合する安全で信頼性の高いLCMの開発に寄与します。
関連論文リスト
- Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
帰属的有理は帰属的有理数よりも人称有理数とよく一致していることを示す。
さらに,従来の研究で特定されたプロンプトベース手法の忠実度制限は,その崩壊予測と関係があることが示唆された。
論文 参考訳(メタデータ) (2024-06-28T20:06:30Z) - UniBias: Unveiling and Mitigating LLM Bias through Internal Attention and FFN Manipulation [12.04811490937078]
フィードフォワードニューラルネットワーク(FFN)とアテンションヘッドが大規模言語モデル(LLM)のバイアスをもたらすかを検討する。
これらのバイアスを軽減するために,推定のみの手法であるUniBiasを導入し,バイアス付きFFNベクトルとアテンションヘッドを効果的に識別・除去する。
論文 参考訳(メタデータ) (2024-05-31T03:59:15Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) は、Large Language Models (LLM) を用いた自然言語処理のための強力なパラダイムとして登場した。
LLMには、感情認識において強いが矛盾する先行性があり、その予測に影響を及ぼすことが示される。
以上の結果から,ICLをより大きなLCMで事前学習領域外の情動中心タスクに使用する場合,注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-25T19:07:32Z) - Steering LLMs Towards Unbiased Responses: A Causality-Guided Debiasing
Framework [20.753141804841]
大規模言語モデル(LLM)はバイアスや差別的な応答を容易に生成できる。
本稿では,人口統計情報とLCMのアウトプットの関連性に着目し,社会的偏見に着目した。
論文 参考訳(メタデータ) (2024-03-13T17:46:28Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
大規模言語モデル(LLM)のバイアスを効果的に軽減するために,正面調整に基づく新たな因果的プロンプト手法を提案する。
実験結果から,提案手法は7つの自然言語処理データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-05T07:47:34Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
説明可能なストック予測を生成するために,LLM(Large Language Models)を教えるフレームワークを提案する。
反射剤は自己推論によって過去の株価の動きを説明する方法を学ぶ一方、PPOトレーナーは最も可能性の高い説明を生成するためにモデルを訓練する。
我々のフレームワークは従来のディープラーニング法とLLM法の両方を予測精度とマシューズ相関係数で上回ることができる。
論文 参考訳(メタデータ) (2024-02-06T03:18:58Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
大規模言語モデル(LLM)は、幅広い自然言語理解と生成タスクにおいて顕著な進歩を遂げている。
本稿では,様々な種類のNLUタスクに対する総合的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-24T06:44:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。