Artificial Intelligence-powered fossil shark tooth identification: Unleashing the potential of Convolutional Neural Networks
- URL: http://arxiv.org/abs/2405.04189v1
- Date: Tue, 7 May 2024 10:49:10 GMT
- Title: Artificial Intelligence-powered fossil shark tooth identification: Unleashing the potential of Convolutional Neural Networks
- Authors: Andrea Barucci, Giulia Ciacci, Pietro LiĆ², Tiago Azevedo, Andrea Di Cencio, Marco Merella, Giovanni Bianucci, Giulia Bosio, Simone Casati, Alberto Collareta,
- Abstract summary: This study explores the capability of Convolutional Neural Networks (CNNs) to classify images of isolated fossil shark teeth.
We developed a CNN, named SharkNet-X, specifically tailored on our recognition task, reaching a 5-fold cross validated mean accuracy of 0.85.
In order to understand and explain the behaviour of the CNN while giving a paleontological point of view on the results, we introduced the explainability method SHAP.
- Score: 10.946419654203613
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: All fields of knowledge are being impacted by Artificial Intelligence. In particular, the Deep Learning paradigm enables the development of data analysis tools that support subject matter experts in a variety of sectors, from physics up to the recognition of ancient languages. Palaeontology is now observing this trend as well. This study explores the capability of Convolutional Neural Networks (CNNs), a particular class of Deep Learning algorithms specifically crafted for computer vision tasks, to classify images of isolated fossil shark teeth gathered from online datasets as well as from the authors$'$ experience on Peruvian Miocene and Italian Pliocene fossil assemblages. The shark taxa that are included in the final, composite dataset (which consists of more than one thousand images) are representative of both extinct and extant genera, namely, Carcharhinus, Carcharias, Carcharocles, Chlamydoselachus, Cosmopolitodus, Galeocerdo, Hemipristis, Notorynchus, Prionace and Squatina. We developed a CNN, named SharkNet-X, specifically tailored on our recognition task, reaching a 5-fold cross validated mean accuracy of 0.85 to identify images containing a single shark tooth. Furthermore, we elaborated a visualization of the features extracted from images using the last dense layer of the CNN, achieved through the application of the clustering technique t-SNE. In addition, in order to understand and explain the behaviour of the CNN while giving a paleontological point of view on the results, we introduced the explainability method SHAP. To the best of our knowledge, this is the first instance in which this method is applied to the field of palaeontology. The main goal of this work is to showcase how Deep Learning techniques can aid in identifying isolated fossil shark teeth, paving the way for developing new information tools for automating the recognition and classification of fossils.
Related papers
- Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
Recent advances in depthwise-separable convolutional neural networks (DS-CNNs) have led to novel architectures.
This paper reveals another striking property of DS-CNN architectures: discernible and explainable patterns emerge in their trained depthwise convolutional kernels in all layers.
arXiv Detail & Related papers (2024-01-25T19:05:53Z) - Discovering Galaxy Features via Dataset Distillation [7.121183597915665]
In many applications, Neural Nets (NNs) have classification performance on par or even exceeding human capacity.
Here, we apply this idea to the notoriously difficult task of galaxy classification.
We present a novel way to summarize and visualize prototypical galaxy morphology through the lens of neural networks.
arXiv Detail & Related papers (2023-11-29T12:39:31Z) - Deep Neural Network Identification of Limnonectes Species and New Class
Detection Using Image Data [5.943822554753426]
Deep neural networks can successfully automate the classification of an image into a known species group for which it has been trained.
We demonstrate that the algorithm can successfully classify an image into a new class if the image does not belong to the existing classes.
arXiv Detail & Related papers (2023-11-15T02:57:59Z) - Why do CNNs excel at feature extraction? A mathematical explanation [53.807657273043446]
We introduce a novel model for image classification, based on feature extraction, that can be used to generate images resembling real-world datasets.
In our proof, we construct piecewise linear functions that detect the presence of features, and show that they can be realized by a convolutional network.
arXiv Detail & Related papers (2023-07-03T10:41:34Z) - Multilayer deep feature extraction for visual texture recognition [0.0]
This paper is focused on improving the accuracy of convolutional neural networks in texture classification.
It is done by extracting features from multiple convolutional layers of a pretrained neural network and aggregating such features using Fisher vector.
We verify the effectiveness of our method on texture classification of benchmark datasets, as well as on a practical task of Brazilian plant species identification.
arXiv Detail & Related papers (2022-08-22T03:53:43Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
We study how homeomorphism affects learned representation of a malware traffic dataset.
Our results suggest that although the details of learned representations and the specific coordinate system defined over the manifold of all parameters differ slightly, the functional approximations are the same.
arXiv Detail & Related papers (2020-09-16T15:37:44Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.