CLPSTNet: A Progressive Multi-Scale Convolutional Steganography Model Integrating Curriculum Learning
- URL: http://arxiv.org/abs/2504.16364v1
- Date: Wed, 23 Apr 2025 02:34:25 GMT
- Title: CLPSTNet: A Progressive Multi-Scale Convolutional Steganography Model Integrating Curriculum Learning
- Authors: Fengchun Liu, Tong Zhang, Chunying Zhang,
- Abstract summary: In this paper, we propose Curriculum Learning Progressive Steganophy Network (CLPSTNet)<n>The network consists of multiple progressive multi-scale convolutional modules that integrate Inception structures and dilated convolutions.<n>The experimental results show that the proposed CLPSTNet has high PSNR, SSIM metrics and decoding accuracy on three large public datasets.
- Score: 8.251354931895667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, a large number of works have introduced Convolutional Neural Networks (CNNs) into image steganography, which transform traditional steganography methods such as hand-crafted features and prior knowledge design into steganography methods that neural networks autonomically learn information embedding. However, due to the inherent complexity of digital images, issues of invisibility and security persist when using CNN models for information embedding. In this paper, we propose Curriculum Learning Progressive Steganophy Network (CLPSTNet). The network consists of multiple progressive multi-scale convolutional modules that integrate Inception structures and dilated convolutions. The module contains multiple branching pathways, starting from a smaller convolutional kernel and dilatation rate, extracting the basic, local feature information from the feature map, and gradually expanding to the convolution with a larger convolutional kernel and dilatation rate for perceiving the feature information of a larger receptive field, so as to realize the multi-scale feature extraction from shallow to deep, and from fine to coarse, allowing the shallow secret information features to be refined in different fusion stages. The experimental results show that the proposed CLPSTNet not only has high PSNR , SSIM metrics and decoding accuracy on three large public datasets, ALASKA2, VOC2012 and ImageNet, but also the steganographic images generated by CLPSTNet have low steganalysis scores.You can find our code at \href{https://github.com/chaos-boops/CLPSTNet}{https://github.com/chaos-boops/CLPSTNet}.
Related papers
- Convolutional Learning on Multigraphs [153.20329791008095]
We develop convolutional information processing on multigraphs and introduce convolutional multigraph neural networks (MGNNs)
To capture the complex dynamics of information diffusion within and across each of the multigraph's classes of edges, we formalize a convolutional signal processing model.
We develop a multigraph learning architecture, including a sampling procedure to reduce computational complexity.
The introduced architecture is applied towards optimal wireless resource allocation and a hate speech localization task, offering improved performance over traditional graph neural networks.
arXiv Detail & Related papers (2022-09-23T00:33:04Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
This paper presents a new deep clustering approach termed image clustering with contrastive learning and multi-scale graph convolutional networks (IcicleGCN)
Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.
arXiv Detail & Related papers (2022-07-14T19:16:56Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Multiscale Convolutional Transformer with Center Mask Pretraining for
Hyperspectral Image Classificationtion [14.33259265286265]
We propose a noval multi-scale convolutional embedding module for hyperspectral images (HSI) to realize effective extraction of spatial-spectral information.
Similar to Mask autoencoder, but our pre-training method only masks the corresponding token of the central pixel in the encoder, and inputs the remaining token into the decoder to reconstruct the spectral information of the central pixel.
arXiv Detail & Related papers (2022-03-09T14:42:26Z) - Image deblurring based on lightweight multi-information fusion network [6.848061582669787]
We propose a lightweight multiinformation fusion network (LMFN) for image deblurring.
In the encoding stage, the image feature is reduced to various smallscale spaces for multi-scale information extraction and fusion.
Then, a distillation network is used in the decoding stage, which allows the network benefit the most from residual learning.
Our network can achieve state-of-the-art image deblurring result with smaller number of parameters and outperforms existing methods in model complexity.
arXiv Detail & Related papers (2021-01-14T00:37:37Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z) - Multi-Subspace Neural Network for Image Recognition [33.61205842747625]
In image classification task, feature extraction is always a big issue. Intra-class variability increases the difficulty in designing the extractors.
Recently, deep learning has drawn lots of attention on automatically learning features from data.
In this study, we proposed multi-subspace neural network (MSNN) which integrates key components of the convolutional neural network (CNN), receptive field, with subspace concept.
arXiv Detail & Related papers (2020-06-17T02:55:34Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.