論文の概要: Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
- arxiv url: http://arxiv.org/abs/2405.04230v1
- Date: Tue, 7 May 2024 11:50:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 14:20:03.715986
- Title: Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
- Title(参考訳): 物理情報ニューラルネットワークの最適化プロセスの展開:PINNはどの程度正確かつ競争的であるか?
- Authors: Jorge F. Urbán, Petros Stefanou, José A. Pons,
- Abstract要約: 本研究では、物理インフォームドニューラルネットワークの潜在的な精度について、従来の類似した研究や従来の数値手法と対比して検討する。
改良された最適化アルゴリズムを選択することで、結果の精度が大幅に向上することがわかった。
損失関数の簡単な修正は精度を向上し、拡張のための追加の道を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the potential accuracy boundaries of physics-informed neural networks, contrasting their approach with previous similar works and traditional numerical methods. We find that selecting improved optimization algorithms significantly enhances the accuracy of the results. Simple modifications to the loss function may also improve precision, offering an additional avenue for enhancement. Despite optimization algorithms having a greater impact on convergence than adjustments to the loss function, practical considerations often favor tweaking the latter due to ease of implementation. On a global scale, the integration of an enhanced optimizer and a marginally adjusted loss function enables a reduction in the loss function by several orders of magnitude across diverse physical problems. Consequently, our results obtained using compact networks (typically comprising 2 or 3 layers of 20-30 neurons) achieve accuracies comparable to finite difference schemes employing thousands of grid points. This study encourages the continued advancement of PINNs and associated optimization techniques for broader applications across various fields.
- Abstract(参考訳): 本研究では、物理インフォームドニューラルネットワークの潜在的な精度境界について、従来の類似した研究や従来の数値手法と対比して検討する。
改良された最適化アルゴリズムを選択することで、結果の精度が大幅に向上することがわかった。
損失関数の簡単な修正は精度を向上し、拡張のための追加の道を提供する。
最適化アルゴリズムは損失関数の調整よりも収束に強い影響を与えるが、実践的な考慮は実装の容易さにより後者を微調整することを好むことが多い。
グローバルスケールでは、拡張オプティマイザと限界調整された損失関数の統合により、様々な物理問題において、損失関数を桁違いに小さくすることができる。
その結果, 数千の格子点を用いた有限差分スキームに匹敵する精度が得られることがわかった。
本研究は、様々な分野にわたる幅広い応用のためのPINNと関連する最適化手法の継続的な進歩を奨励する。
関連論文リスト
- Newton Losses: Using Curvature Information for Learning with Differentiable Algorithms [80.37846867546517]
カスタム目的の8つの異なるニューラルネットワークのトレーニング方法を示す。
我々はその2次情報を経験的フィッシャー行列を通して活用する。
ロスロスロスシブルアルゴリズムを用いて、少ない微分可能アルゴリズムに対する大幅な改善を実現する。
論文 参考訳(メタデータ) (2024-10-24T18:02:11Z) - Adaptive Friction in Deep Learning: Enhancing Optimizers with Sigmoid and Tanh Function [0.0]
我々は適応摩擦係数を統合する2つの新しい勾配であるsigSignGradとtanhSignGradを紹介する。
我々の理論解析は,摩擦係数Sの広帯域調整能力を示す。
ResNet50 と ViT アーキテクチャを用いた CIFAR-10, Mini-Image-Net 実験により,提案手法の優れた性能が確認された。
論文 参考訳(メタデータ) (2024-08-07T03:20:46Z) - SySMOL: Co-designing Algorithms and Hardware for Neural Networks with Heterogeneous Precisions [20.241671088121144]
最近の量子化技術は、非常に微細な粒度で不均一な精度を実現している。
これらのネットワークは、個々の変数の精度設定をデコードし、変数を調整し、きめ細かい混合精度計算機能を提供するために、追加のハードウェアを必要とする。
ネットワークを細粒度の不均一な精度で効率的に実行するためのエンド・ツー・エンド協調設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T17:20:09Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - Half-Inverse Gradients for Physical Deep Learning [25.013244956897832]
異なる物理シミュレータをトレーニングプロセスに統合することは、結果の質を大幅に向上させる。
勾配に基づく解法は、多くの物理過程の固有の性質であるスケールと方向を操作できるため、勾配流に深い影響を与える。
本研究では,この現象に苦しむことのない新しい手法を導出するために,物理・ニューラルネットワーク最適化の特性を解析する。
論文 参考訳(メタデータ) (2022-03-18T19:11:04Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
我々は、一般的に使用される最適化アルゴリズムの幅広いクラスについて考察する。
その結果、ニューラルネットワークの収束挙動を利用することができる。
このアプローチは他の最適化アルゴリズムやネットワーク理論にも拡張できると考えています。
論文 参考訳(メタデータ) (2020-10-25T17:10:22Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
本稿では、予測精度とネットワーク複雑性を2つの個別目的関数として扱うことにより、ニューラルネットワークのトレーニングに関する多目的視点を提案する。
模範的畳み込みニューラルネットワークの予備的な数値結果から、ニューラルネットワークの複雑性の大幅な低減と精度の低下が可能であることが確認された。
論文 参考訳(メタデータ) (2020-08-31T13:28:03Z) - What Deep CNNs Benefit from Global Covariance Pooling: An Optimization
Perspective [102.37204254403038]
我々は最適化の観点から、GCPの深いCNNのメリットを理解する試みを行っている。
GCPは最適化のランドスケープをよりスムーズにし、勾配をより予測できることを示す。
多様なタスクに対して様々な深部CNNモデルを用いて広範な実験を行い,その結果を強く支持する。
論文 参考訳(メタデータ) (2020-03-25T07:00:45Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。