Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
- URL: http://arxiv.org/abs/2405.04230v1
- Date: Tue, 7 May 2024 11:50:25 GMT
- Title: Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
- Authors: Jorge F. Urbán, Petros Stefanou, José A. Pons,
- Abstract summary: This study investigates the potential accuracy of physics-informed neural networks, contrasting their approach with previous similar works and traditional numerical methods.
We find that selecting improved optimization algorithms significantly enhances the accuracy of the results.
Simple modifications to the loss function may also improve precision, offering an additional avenue for enhancement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the potential accuracy boundaries of physics-informed neural networks, contrasting their approach with previous similar works and traditional numerical methods. We find that selecting improved optimization algorithms significantly enhances the accuracy of the results. Simple modifications to the loss function may also improve precision, offering an additional avenue for enhancement. Despite optimization algorithms having a greater impact on convergence than adjustments to the loss function, practical considerations often favor tweaking the latter due to ease of implementation. On a global scale, the integration of an enhanced optimizer and a marginally adjusted loss function enables a reduction in the loss function by several orders of magnitude across diverse physical problems. Consequently, our results obtained using compact networks (typically comprising 2 or 3 layers of 20-30 neurons) achieve accuracies comparable to finite difference schemes employing thousands of grid points. This study encourages the continued advancement of PINNs and associated optimization techniques for broader applications across various fields.
Related papers
- Newton Losses: Using Curvature Information for Learning with Differentiable Algorithms [80.37846867546517]
We show how to train eight different neural networks with custom objectives.
We exploit their second-order information via their empirical Fisherssian matrices.
We apply Loss Lossiable algorithms to achieve significant improvements for less differentiable algorithms.
arXiv Detail & Related papers (2024-10-24T18:02:11Z) - Adaptive Friction in Deep Learning: Enhancing Optimizers with Sigmoid and Tanh Function [0.0]
We introduce sigSignGrad and tanhSignGrad, two novel gradients that integrate adaptive friction coefficients.
Our theoretical analysis demonstrates the wide-ranging adjustment capability of the friction coefficient S.
Experiments on CIFAR-10, Mini-Image-Net using ResNet50 and ViT architectures confirm the superior performance our proposeds.
arXiv Detail & Related papers (2024-08-07T03:20:46Z) - SySMOL: Co-designing Algorithms and Hardware for Neural Networks with Heterogeneous Precisions [20.241671088121144]
Recent quantization techniques have enabled heterogeneous precisions at very fine granularity.
These networks require additional hardware to decode the precision settings for individual variables, align the variables, and provide fine-grained mixed-precision compute capabilities.
We present an end-to-end co-design approach to efficiently execute networks with fine-grained heterogeneous precisions.
arXiv Detail & Related papers (2023-11-23T17:20:09Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
Physics-informed neural networks (PINNs) incorporate physical knowledge from the problem domain as a soft constraint on the loss function.
We study the impact of the location of the collocation points on the trainability of these models.
We propose a novel adaptive collocation scheme which progressively allocates more collocation points to areas where the model is making higher errors.
arXiv Detail & Related papers (2022-07-08T18:17:06Z) - Half-Inverse Gradients for Physical Deep Learning [25.013244956897832]
Integrating differentiable physics simulators into the training process can greatly improve the quality of results.
The gradient-based solvers have a profound effect on the gradient flow as manipulating scales in magnitude and direction is an inherent property of many physical processes.
In this work, we analyze the characteristics of both physical and neural network optimizations to derive a new method that does not suffer from this phenomenon.
arXiv Detail & Related papers (2022-03-18T19:11:04Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
We propose a multiobjective perspective on the training of neural networks by treating its prediction accuracy and the network complexity as two individual objective functions.
Preliminary numerical results on exemplary convolutional neural networks confirm that large reductions in the complexity of neural networks with neglibile loss of accuracy are possible.
arXiv Detail & Related papers (2020-08-31T13:28:03Z) - What Deep CNNs Benefit from Global Covariance Pooling: An Optimization
Perspective [102.37204254403038]
We make an attempt to understand what deep CNNs benefit from GCP in a viewpoint of optimization.
We show that GCP can make the optimization landscape more smooth and the gradients more predictive.
We conduct extensive experiments using various deep CNN models on diversified tasks, and the results provide strong support to our findings.
arXiv Detail & Related papers (2020-03-25T07:00:45Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.