論文の概要: Molecular Identification via Molecular Fingerprint extraction from Atomic Force Microscopy images
- arxiv url: http://arxiv.org/abs/2405.04321v1
- Date: Tue, 7 May 2024 13:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 14:00:34.870049
- Title: Molecular Identification via Molecular Fingerprint extraction from Atomic Force Microscopy images
- Title(参考訳): 原子間力顕微鏡画像からの分子指紋抽出による分子同定
- Authors: Manuel González Lastre, Pablo Pou, Miguel Wiche, Daniel Ebeling, Andre Schirmeisen, Rubén Pérez,
- Abstract要約: 深層学習モデルは、一定の高さのHR-AFM画像の3Dスタックに符号化された化学情報や構造情報を検索することができる。
本研究では, トポロジカルフィンガーによる分子構造記述の確立により, それらの限界を克服する。
指紋による仮想検診を他のDLモデルによって提供されるグローバルな情報で補完することは可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non--Contact Atomic Force Microscopy with CO--functionalized metal tips (referred to as HR-AFM) provides access to the internal structure of individual molecules adsorbed on a surface with totally unprecedented resolution. Previous works have shown that deep learning (DL) models can retrieve the chemical and structural information encoded in a 3D stack of constant-height HR--AFM images, leading to molecular identification. In this work, we overcome their limitations by using a well-established description of the molecular structure in terms of topological fingerprints, the 1024--bit Extended Connectivity Chemical Fingerprints of radius 2 (ECFP4), that were developed for substructure and similarity searching. ECFPs provide local structural information of the molecule, each bit correlating with a particular substructure within the molecule. Our DL model is able to extract this optimized structural descriptor from the 3D HR--AFM stacks and use it, through virtual screening, to identify molecules from their predicted ECFP4 with a retrieval accuracy on theoretical images of 95.4\%. Furthermore, this approach, unlike previous DL models, assigns a confidence score, the Tanimoto similarity, to each of the candidate molecules, thus providing information on the reliability of the identification. By construction, the number of times a certain substructure is present in the molecule is lost during the hashing process, necessary to make them useful for machine learning applications. We show that it is possible to complement the fingerprint-based virtual screening with global information provided by another DL model that predicts from the same HR--AFM stacks the chemical formula, boosting the identification accuracy up to a 97.6\%. Finally, we perform a limited test with experimental images, obtaining promising results towards the application of this pipeline under real conditions
- Abstract(参考訳): HR-AFMと呼ばれる)CO-機能性金属先端を持つ非接触原子間力顕微鏡は、表面上に吸着した個々の分子の内部構造に全く前例のない解像度でアクセスできる。
従来の研究によると、深層学習(DL)モデルは、定数重HR-AFM画像の3次元スタックに符号化された化学情報や構造情報を検索でき、分子識別に繋がった。
本研究では,3D HR-AFMスタックからこの最適化された構造記述子を抽出し,仮想スクリーニングにより,予測されたECFP4から分子を精度95.4\%の精度で同定する。
さらに、従来のDLモデルとは異なり、この手法は各候補分子に信頼スコアである谷本類似度を割り当て、識別の信頼性に関する情報を提供する。
構築によって、分子内にあるサブ構造が存在する回数は、ハッシュプロセス中に失われ、機械学習アプリケーションに役立てるために必要となる。
我々は,指紋による仮想スクリーニングを,同一のHR-AFMスタックから化学式を予測した別のDLモデルによって提供されるグローバル情報と補完することができ,識別精度を97.6\%まで向上させることができることを示す。
最後に,実験画像を用いた限定的な実験を行い,実環境下でのパイプライン適用に向けた有望な結果を得た。
関連論文リスト
- MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
約140,000個の小分子からなる大規模かつ高精度な分子表現データセットを構築した。
我々のデータセットは、モデルの開発と設計をガイドするために、重要な物理化学的解釈性を提供します。
このデータセットは、分子表現学習のためのより正確で信頼性の高いベンチマークとして機能すると考えています。
論文 参考訳(メタデータ) (2024-06-13T02:50:23Z) - Medication Recommendation via Dual Molecular Modalities and Multi-Step Enhancement [6.927266015351967]
既存の分子知識に基づく研究は、分子の3次元幾何学構造を無視し、医薬品の高次元情報を学ぶのに失敗している。
本稿では,原子3次元座標とエッジインデックスを得るために3次元分子構造を導入するBiMoRecという2次元分子レコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-30T07:13:08Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
全分子の逆折り畳みのための統一モデルUniIFを提案する。
提案手法は,全タスクにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-29T10:26:16Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
分子生成のための階層型テキスト変換法 (HI-Mol) を提案する。
HI-Molは分子分布を理解する上での階層的情報、例えば粗い特徴ときめ細かい特徴の重要性にインスパイアされている。
単一レベルトークン埋め込みを用いた画像領域の従来のテキストインバージョン法と比較して, マルチレベルトークン埋め込みにより, 基礎となる低ショット分子分布を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-05-05T08:35:23Z) - SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
Molecular Property Prediction [1.534667887016089]
多パラメータ持続ホモロジー(MPPH)を用いた新しい分子指紋生成法を提案する。
この技術は、正確な分子特性予測が不可欠である薬物発見と材料科学において、かなりの重要性を持っている。
分子特性の予測における既存の最先端手法よりも優れた性能を示し,MoleculeNetベンチマークで広範囲な評価を行った。
論文 参考訳(メタデータ) (2023-12-12T09:33:54Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - MolFM: A Multimodal Molecular Foundation Model [9.934141536012596]
MolFMは分子構造、バイオメディカルテキスト、知識グラフからの共同表現学習を容易にするために設計された多モード分子基盤モデルである。
我々は,同分子の異なるモジュラリティ間の特徴空間における距離を最小化することにより,我々のクロスモーダル事前学習が局所的および大域的分子知識を捕捉する理論解析を行う。
クロスモーダル検索では、MolFMは既存のモデルよりも12.13%、絶対利得は5.04%、ゼロショットと微調整がそれぞれ優れている。
論文 参考訳(メタデータ) (2023-06-06T12:45:15Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
分子グラフ構造アンダーラインCo設計のための機械学習ベースの生成フレームワークであるMollCodeを提案する。
MolCodeでは、3D幾何情報によって分子2Dグラフの生成が促進され、それによって分子3D構造の予測が導かれる。
分子設計における2次元トポロジーと3次元幾何は本質的に相補的な情報を含んでいることが明らかとなった。
論文 参考訳(メタデータ) (2023-04-12T13:34:22Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。