論文の概要: Enhancing Scalability of Metric Differential Privacy via Secret Dataset Partitioning and Benders Decomposition
- arxiv url: http://arxiv.org/abs/2405.04344v2
- Date: Thu, 9 May 2024 04:36:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 12:23:27.597977
- Title: Enhancing Scalability of Metric Differential Privacy via Secret Dataset Partitioning and Benders Decomposition
- Title(参考訳): 秘密データセット分割とベンダー分割によるメトリクス微分プライバシーのスケーラビリティ向上
- Authors: Chenxi Qiu,
- Abstract要約: メトリック微分プライバシー(mDP)は、新しいデータパラダイムとして機能するために、差分プライバシー(DP)の概念を拡張します。
道路網やグリッドマップ上の単語埋め込みや位置情報として符号化されたテキストデータなど、一般的なメートル法空間で表される秘密データを保護するように設計されている。
- 参考スコア(独自算出の注目度): 1.283608820493284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metric Differential Privacy (mDP) extends the concept of Differential Privacy (DP) to serve as a new paradigm of data perturbation. It is designed to protect secret data represented in general metric space, such as text data encoded as word embeddings or geo-location data on the road network or grid maps. To derive an optimal data perturbation mechanism under mDP, a widely used method is linear programming (LP), which, however, might suffer from a polynomial explosion of decision variables, rendering it impractical in large-scale mDP. In this paper, our objective is to develop a new computation framework to enhance the scalability of the LP-based mDP. Considering the connections established by the mDP constraints among the secret records, we partition the original secret dataset into various subsets. Building upon the partition, we reformulate the LP problem for mDP and solve it via Benders Decomposition, which is composed of two stages: (1) a master program to manage the perturbation calculation across subsets and (2) a set of subproblems, each managing the perturbation derivation within a subset. Our experimental results on multiple datasets, including geo-location data in the road network/grid maps, text data, and synthetic data, underscore our proposed mechanism's superior scalability and efficiency.
- Abstract(参考訳): メトリック微分プライバシー(mDP)は、データ摂動の新しいパラダイムとして機能するために、差分プライバシー(DP)の概念を拡張します。
道路網やグリッドマップ上の単語埋め込みや位置情報として符号化されたテキストデータなど、一般的なメートル法空間で表される秘密データを保護するように設計されている。
mDPの下で最適なデータ摂動機構を導出するために、広く使われている手法は線形プログラミング(LP)であり、これは決定変数の多項式爆発に悩まされ、大規模なmDPでは非現実的である。
本稿では,LPベースのmDPのスケーラビリティを向上する新しい計算フレームワークを開発することを目的とする。
秘密レコード間のmDP制約によって確立された接続を考えると、元の秘密データセットを様々なサブセットに分割する。
1)サブセット間の摂動計算を管理するマスタプログラムと,(2)サブプロブレムのセットで,それぞれがサブセット内で摂動の導出を管理する。
道路ネットワーク/グリッドマップの位置情報データ,テキストデータ,合成データなど,複数のデータに対する実験結果から,提案手法のスケーラビリティと効率性を評価する。
関連論文リスト
- Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Images in Discrete Choice Modeling: Addressing Data Isomorphism in
Multi-Modality Inputs [77.54052164713394]
本稿では,離散選択モデリング(DCM)と機械学習の交わりについて考察する。
本稿では,DCMフレームワーク内の従来の表型入力と同型情報を共有する高次元画像データの埋め込み結果について検討する。
論文 参考訳(メタデータ) (2023-12-22T14:33:54Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
行列データに対して行次元と列次元の両方に隠れたバリエーションを抽出するために,モードワイド・プリンシパル・サブスペース・スーツ (MOP-UP) と呼ばれる新しいフレームワークを導入する。
提案フレームワークの有効性と実用性は、シミュレーションと実データの両方の実験を通して実証される。
論文 参考訳(メタデータ) (2023-07-02T13:59:47Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Federated Coordinate Descent for Privacy-Preserving Multiparty Linear
Regression [0.5049057348282932]
我々は、FCDと呼ばれる新しい分散スキームであるFederated Coordinate Descentを紹介し、マルチパーティシナリオ下でこの問題に安全に対処する。
具体的には、セキュアな集約と追加の摂動により、(1)ローカル情報が他の当事者にリークされることがなく、(2)グローバルモデルパラメータがクラウドサーバに公開されることが保証される。
また,FCD方式は, 線形, リッジ, ラッソ回帰などの一般線形回帰に適用可能であることを示す。
論文 参考訳(メタデータ) (2022-09-16T03:53:46Z) - BATS: Best Action Trajectory Stitching [22.75880303352508]
本稿では,データセットに新たな遷移を加えることで,ログデータ上に表形式のマルコフ決定プロセス(MDP)を形成するアルゴリズムを提案する。
この性質により、値関数の上限と下限を適切な距離の測度に設定できることを示す。
本稿では,提案アルゴリズムが生成したMDPの最適ポリシーを単純にクローンする動作が,この問題を回避する一例を示す。
論文 参考訳(メタデータ) (2022-04-26T01:48:32Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Privacy-preserving Data Sharing on Vertically Partitioned Data [16.167363414383576]
本稿では,垂直分割データから合成データを生成する微分プライベート手法を提案する。
我々は変分推論を用いて分割データ上で混合モデルを訓練する。
システム内のさまざまなプレーヤに対するプライバシ保証を厳格に定義する。
論文 参考訳(メタデータ) (2020-10-19T08:10:34Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。