論文の概要: Resource-Efficient and Self-Adaptive Quantum Search in a Quantum-Classical Hybrid System
- arxiv url: http://arxiv.org/abs/2405.04490v1
- Date: Tue, 7 May 2024 17:00:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 13:21:31.863592
- Title: Resource-Efficient and Self-Adaptive Quantum Search in a Quantum-Classical Hybrid System
- Title(参考訳): 量子-古典ハイブリッドシステムにおける資源効率と自己適応量子探索
- Authors: Zihao Jiang, Zefan Du, Shaolun Ruan, Juntao Chen, Yong Wang, Long Cheng, Rajkumar Buyya, Ying Mao,
- Abstract要約: 本稿では,量子古典的ハイブリッドフレームワークにおける資源効率の高い指標値探索システムReSaQuSを紹介する。
我々は、ReSaQuSが86.36%の累積量子ビット消費と72.72%のアクティブ期間で大幅に減少していることを示した。
- 参考スコア(独自算出の注目度): 24.67144593838334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past decade, the rapid advancement of deep learning and big data applications has been driven by vast datasets and high-performance computing systems. However, as we approach the physical limits of semiconductor fabrication in the post-Moore's Law era, questions arise about the future of these applications. In parallel, quantum computing has made significant progress with the potential to break limits. Major companies like IBM, Google, and Microsoft provide access to noisy intermediate-scale quantum (NISQ) computers. Despite the theoretical promise of Shor's and Grover's algorithms, practical implementation on current quantum devices faces challenges, such as demanding additional resources and a high number of controlled operations. To tackle these challenges and optimize the utilization of limited onboard qubits, we introduce ReSaQuS, a resource-efficient index-value searching system within a quantum-classical hybrid framework. Building on Grover's algorithm, ReSaQuS employs an automatically managed iterative search approach. This method analyzes problem size, filters fewer probable data points, and progressively reduces the dataset with decreasing qubit requirements. Implemented using Qiskit and evaluated through extensive experiments, ReSaQuS has demonstrated a substantial reduction, up to 86.36\% in cumulative qubit consumption and 72.72\% in active periods, reinforcing its potential in optimizing quantum computing application deployment.
- Abstract(参考訳): 過去10年間で、ディープラーニングとビッグデータアプリケーションの急速な進歩は、膨大なデータセットと高性能コンピューティングシステムによって推進されてきた。
しかし、ムーアの法則時代における半導体製造の物理的限界に近づくと、これらの応用の将来について疑問が生じる。
並行して、量子コンピューティングは限界を破る可能性によって大きな進歩を遂げた。
IBM、Google、Microsoftといった主要企業は、ノイズの多い中規模量子コンピュータ(NISQ)へのアクセスを提供している。
ShorとGroverのアルゴリズムの理論的な約束にもかかわらず、現在の量子デバイスへの実践的な実装は、追加リソースの要求や多数の制御操作といった課題に直面している。
これらの課題に対処し、限られた量子ビットの利用を最適化するために、量子古典ハイブリッドフレームワーク内で資源効率の高い指数値探索システムReSaQuSを導入する。
Groverのアルゴリズムに基づいて、ReSaQuSは自動管理された反復探索アプローチを採用している。
この方法は問題の大きさを解析し、より少ない確率データポイントをフィルタリングし、キュービット要求を減らしてデータセットを漸進的に削減する。
Qiskitを用いて実装され、広範な実験を通じて評価されたReSaQuSは、累積量子ビット消費の86.36\%、アクティブな期間の72.72\%を大幅に削減し、量子コンピューティングアプリケーションのデプロイを最適化する可能性を強化した。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
量子クラウドコンピューティング(QCC)は、量子コンピューティングリソースを効率的に提供するための有望なアプローチを提供する。
ユーザ需要の変動と量子回路の要求は、効率的なリソース供給のために困難である。
本稿では、量子コンピューティングとネットワークリソースのプロビジョニングのためのリソース割り当てモデルを提案する。
論文 参考訳(メタデータ) (2023-07-25T00:38:46Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Preparing random state for quantum financing with quantum walks [1.2074552857379273]
本稿では,古典的ハードウェア上で量子コンピュータや量子シミュレータで実行可能な量子状態に古典的データをロードする効率的な手法を提案する。
Qiskitを使ったSSQWの実装の実践例がオープンソースソフトウェアとしてリリースされた。
所望の確率振幅分布を生成するための有望な方法として、その可能性を示すことは、量子シミュレーションによるオプション価格設定におけるSSQWの適用の可能性を強調している。
論文 参考訳(メタデータ) (2023-02-24T08:01:35Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Variational Quantum Algorithms [1.9486734911696273]
量子コンピュータは、大規模量子システムや大規模線形代数問題を解くなどの応用を解くことを約束する。
現在利用可能な量子デバイスには、量子ビット数の制限や回路深さを制限するノイズプロセスなど、深刻な制約がある。
パラメトリズド量子回路のトレーニングに古典的シミュレーションを用いる変分量子アルゴリズム(vqas)は、これらの制約に対処するための主要な戦略として登場した。
論文 参考訳(メタデータ) (2020-12-16T21:00:46Z) - A Hybrid System for Learning Classical Data in Quantum States [13.900722734372254]
我々は、量子状態を通して古典的なデータを学習するためのハイブリッドで汎用的な量子フレームワークGenQuを提案する。
我々は、実際のデータセットを用いてGenQuを評価し、シミュレーションと実量子コンピュータIBM-Qの両方で実験を行う。
論文 参考訳(メタデータ) (2020-12-01T04:17:33Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via
Cost-Effective Uncomputation [7.92565122267857]
本稿では,量子プログラムにおけるスクラッチキュービット(アンシラ)の割り当てと再利用に取り組むコンパイル基盤を提案する。
中心となるSQUAREは、量子ビット再利用の機会を生み出すために、戦略的に非計算を行う。
SQUARE は NISQ アプリケーションの平均成功率を 1.47 倍改善することを示した。
論文 参考訳(メタデータ) (2020-04-18T06:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。