論文の概要: Differentially Private Synthetic Data with Private Density Estimation
- arxiv url: http://arxiv.org/abs/2405.04554v1
- Date: Mon, 6 May 2024 14:06:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 16:04:43.259558
- Title: Differentially Private Synthetic Data with Private Density Estimation
- Title(参考訳): 個人密度推定を用いた微分プライベート合成データ
- Authors: Nikolija Bojkovic, Po-Ling Loh,
- Abstract要約: 我々は、差分プライバシーの枠組みを採用し、データセット全体を生成するメカニズムを探究する。
我々はBoedihardjoらの研究に基づいて、プライベートな合成データを生成するための新しい最適化ベースのアルゴリズムの基礎を築いた。
- 参考スコア(独自算出の注目度): 2.209921757303168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The need to analyze sensitive data, such as medical records or financial data, has created a critical research challenge in recent years. In this paper, we adopt the framework of differential privacy, and explore mechanisms for generating an entire dataset which accurately captures characteristics of the original data. We build upon the work of Boedihardjo et al, which laid the foundations for a new optimization-based algorithm for generating private synthetic data. Importantly, we adapt their algorithm by replacing a uniform sampling step with a private distribution estimator; this allows us to obtain better computational guarantees for discrete distributions, and develop a novel algorithm suitable for continuous distributions. We also explore applications of our work to several statistical tasks.
- Abstract(参考訳): 医療記録や財務データなどの機密データを分析する必要性は、近年、重要な研究課題を生み出している。
本稿では、差分プライバシーの枠組みを採用し、元のデータの特徴を正確に把握するデータセット全体を生成するメカニズムを探求する。
我々はBoedihardjoらの研究に基づいて、プライベートな合成データを生成するための新しい最適化ベースのアルゴリズムの基礎を築いた。
重要なことは、一様サンプリングステップをプライベート分布推定器に置き換えることでアルゴリズムを適応させることで、離散分布に対するより良い計算保証を得ることができ、連続分布に適した新しいアルゴリズムを開発することができる。
また、我々の研究のいくつかの統計的タスクへの応用についても検討する。
関連論文リスト
- Hierarchical Bayes Approach to Personalized Federated Unsupervised
Learning [7.8583640700306585]
階層型ベイズ統計フレームワークに着想を得た最適化基準に基づくアルゴリズムを開発する。
我々は,限られたローカルデータと協調情報とのバランスを検出する適応アルゴリズムを開発した。
提案アルゴリズムを合成データと実データを用いて評価し、パーソナライズされたタスクに対する効果的なサンプル増幅を実証した。
論文 参考訳(メタデータ) (2024-02-19T20:53:27Z) - Data Analytics with Differential Privacy [0.0]
我々は分散データとストリーミングデータを解析するための差分プライベートアルゴリズムを開発した。
分散モデルでは、学習の特定の問題 -- 分散形式で -- がデータのグローバルモデルであると考えている。
私たちは、ストリーミングモデル、ユーザーレベルのパンプライバシに対して、最も強力なプライバシー保証の1つを提供しています。
論文 参考訳(メタデータ) (2023-07-20T17:43:29Z) - Differentially Private Synthetic Data Using KD-Trees [11.96971298978997]
ノイズ摂動とともに空間分割技術を活用し,直観的かつ透過的なアルゴリズムを実現する。
我々は、$epsilon$-differentially private synthesis data generationのためのデータ独立アルゴリズムとデータ依存アルゴリズムの両方を提案する。
先行研究に対して実証的な実用性向上を示すとともに,実データセット上の下流分類タスクにおけるアルゴリズムの性能について考察する。
論文 参考訳(メタデータ) (2023-06-19T17:08:32Z) - Regression with Label Differential Privacy [64.21020761920322]
与えられた回帰損失関数の下で最適なラベルDPランダム化機構を導出する。
我々は、最適メカニズムが「ビンのランダム化応答」の形をとることを証明した。
論文 参考訳(メタデータ) (2022-12-12T17:41:32Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Private Domain Adaptation from a Public Source [48.83724068578305]
我々は、公開ラベル付きデータを持つソースドメインから、未ラベル付きプライベートデータを持つターゲットドメインへの適応のための差分プライベート離散性に基づくアルゴリズムを設計する。
我々の解は、Frank-WolfeとMirror-Descentアルゴリズムのプライベートな変種に基づいている。
論文 参考訳(メタデータ) (2022-08-12T06:52:55Z) - Sensitivity analysis in differentially private machine learning using
hybrid automatic differentiation [54.88777449903538]
感性分析のための新しいテクスチブリド自動識別システム(AD)を導入する。
これにより、ニューラルネットワークをプライベートデータ上でトレーニングするなど、任意の微分可能な関数合成の感度をモデル化できる。
当社のアプローチは,データ処理の設定において,プライバシ損失に関する原則的推論を可能にする。
論文 参考訳(メタデータ) (2021-07-09T07:19:23Z) - Differentially Private Simple Linear Regression [2.614403183902121]
差分プライバシーを満たす単純な線形回帰のアルゴリズムについて検討する。
小データセットに対する単純な線形回帰のための微分プライベートアルゴリズムの設計を考察する。
設定に適応するアルゴリズムのスペクトルの性能について検討する。
論文 参考訳(メタデータ) (2020-07-10T04:28:43Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。