Inferring Discussion Topics about Exploitation of Vulnerabilities from Underground Hacking Forums
- URL: http://arxiv.org/abs/2405.04561v1
- Date: Tue, 7 May 2024 14:54:32 GMT
- Title: Inferring Discussion Topics about Exploitation of Vulnerabilities from Underground Hacking Forums
- Authors: Felipe Moreno-Vera,
- Abstract summary: Underground hacking forums serve as breeding grounds for the exchange of hacking techniques and discussions related to exploitation.
We propose an innovative approach using topic modeling to analyze and uncover key themes in vulnerabilities discussed within these forums.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing sophistication of cyber threats necessitates proactive measures to identify vulnerabilities and potential exploits. Underground hacking forums serve as breeding grounds for the exchange of hacking techniques and discussions related to exploitation. In this research, we propose an innovative approach using topic modeling to analyze and uncover key themes in vulnerabilities discussed within these forums. The objective of our study is to develop a machine learning-based model that can automatically detect and classify vulnerability-related discussions in underground hacking forums. By monitoring and analyzing the content of these forums, we aim to identify emerging vulnerabilities, exploit techniques, and potential threat actors. To achieve this, we collect a large-scale dataset consisting of posts and threads from multiple underground forums. We preprocess and clean the data to ensure accuracy and reliability. Leveraging topic modeling techniques, specifically Latent Dirichlet Allocation (LDA), we uncover latent topics and their associated keywords within the dataset. This enables us to identify recurring themes and prevalent discussions related to vulnerabilities, exploits, and potential targets.
Related papers
- Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
We find that embedding models for retrieval, rerankers, and large language model (LLM) relevance judges are vulnerable to content injection attacks.
We identify two primary threats: (1) inserting unrelated or harmful content within passages that still appear deceptively "relevant", and (2) inserting entire queries or key query terms into passages to boost their perceived relevance.
Our study systematically examines the factors that influence an attack's success, such as the placement of injected content and the balance between relevant and non-relevant material.
arXiv Detail & Related papers (2025-01-30T18:02:15Z) - A Multidisciplinary Approach to Telegram Data Analysis [0.0]
This paper presents a multidisciplinary approach to analyzing data from Telegram for early warning information regarding cyber threats.
We employ a combination of neural network architectures and traditional machine learning algorithms.
We aim to enhance early warning systems for cyber threats, enabling more proactive responses to potential security breaches.
arXiv Detail & Related papers (2024-12-29T09:10:52Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.
Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.
This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Cream Skimming the Underground: Identifying Relevant Information Points
from Online Forums [0.16252563723817934]
This paper proposes a machine learning-based approach for detecting the exploitation of vulnerabilities in the wild by monitoring underground hacking forums.
We develop a supervised machine learning model that can filter threads citing CVEs and label them as Proof-of-Concept, Weaponization, or Exploitation.
arXiv Detail & Related papers (2023-08-03T16:52:42Z) - Exploring the Limits of Transfer Learning with Unified Model in the
Cybersecurity Domain [17.225973170682604]
We introduce a generative multi-task model, Unified Text-to-Text Cybersecurity (UTS)
UTS is trained on malware reports, phishing site URLs, programming code constructs, social media data, blogs, news articles, and public forum posts.
We show UTS improves the performance of some cybersecurity datasets.
arXiv Detail & Related papers (2023-02-20T22:21:26Z) - Generating Cyber Threat Intelligence to Discover Potential Security
Threats Using Classification and Topic Modeling [6.0897744845912865]
Cyber Threat Intelligence (CTI) has been represented as one of the proactive and robust mechanisms.
Our goal is to identify and explore relevant CTI from hacker forums by using different supervised and unsupervised learning techniques.
arXiv Detail & Related papers (2021-08-16T02:30:29Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.