論文の概要: Language Modeling Using Tensor Trains
- arxiv url: http://arxiv.org/abs/2405.04590v1
- Date: Tue, 7 May 2024 18:09:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 13:35:11.526407
- Title: Language Modeling Using Tensor Trains
- Title(参考訳): テンソルトレインを用いた言語モデリング
- Authors: Zhan Su, Yuqin Zhou, Fengran Mo, Jakob Grue Simonsen,
- Abstract要約: テンソルトレイン言語モデル(TTLM)と呼ばれる,最も単純なテンソルネットワーク(テンソルトレイン)に基づく新しいテンソルネットワーク言語モデルを提案する。
TTLMは、単語のテンソル積によって構築された指数空間内の文を表すが、低次元の方法で文の確率を計算する。
- 参考スコア(独自算出の注目度): 11.19279979601076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel tensor network language model based on the simplest tensor network (i.e., tensor trains), called `Tensor Train Language Model' (TTLM). TTLM represents sentences in an exponential space constructed by the tensor product of words, but computing the probabilities of sentences in a low-dimensional fashion. We demonstrate that the architectures of Second-order RNNs, Recurrent Arithmetic Circuits (RACs), and Multiplicative Integration RNNs are, essentially, special cases of TTLM. Experimental evaluations on real language modeling tasks show that the proposed variants of TTLM (i.e., TTLM-Large and TTLM-Tiny) outperform the vanilla Recurrent Neural Networks (RNNs) with low-scale of hidden units. (The code is available at https://github.com/shuishen112/tensortrainlm.)
- Abstract(参考訳): 本稿では, テンソルトレイン言語モデル (TTLM) と呼ばれる, 最も単純なテンソルネットワーク(テンソルトレイン)に基づく新しいテンソルネットワーク言語モデルを提案する。
TTLMは、単語のテンソル積によって構築された指数空間内の文を表すが、低次元の方法で文の確率を計算する。
本稿では,2次RNN,RAC(Recurrent Arithmetic Circuits)および乗算積分RNNのアーキテクチャがTTLMの特殊な場合であることを実証する。
実言語モデリングタスクの実験的評価により,提案したTTLM(TTLM-LargeとTTLM-Tiny)は,低スケールの隠れユニットでバニラリカレントニューラルネットワーク(RNN)を上回る性能を示した。
(コードはhttps://github.com/shuishen112/tensortrainlm.comで入手できる)。
関連論文リスト
- Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
形式言語理論は、特に認識者に関するものである。
代わりに、非公式な意味でのみ類似したプロキシタスクを使用するのが一般的である。
ニューラルネットワークを文字列のバイナリ分類器として直接訓練し評価することで、このミスマッチを補正する。
論文 参考訳(メタデータ) (2024-11-11T16:33:25Z) - On the Computational Complexity and Formal Hierarchy of Second Order
Recurrent Neural Networks [59.85314067235965]
2次次リカレントネットワーク(RNN)の理論基盤を拡大する(2次RNN)
有界時間でチューリング完備な RNN のクラスが存在することを証明している。
また、記憶のない2ドルのRNNは、バニラRNNのような現代のモデルよりも優れており、正規文法の認識において繰り返し単位をゲートしていることを示す。
論文 参考訳(メタデータ) (2023-09-26T06:06:47Z) - Advancing Regular Language Reasoning in Linear Recurrent Neural Networks [56.11830645258106]
本稿では,リニアリカレントニューラルネットワーク(LRNN)がトレーニングシーケンスに隠された規則を学習できるかを検討する。
ブロック対角および入力依存遷移行列を備えた新しいLRNNを提案する。
実験結果から,提案モデルが正規言語タスクに対して長さ外挿を行うことができる唯一のLRNNであることが示唆された。
論文 参考訳(メタデータ) (2023-09-14T03:36:01Z) - SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks [21.616328837090396]
スパイキングニューラルネットワーク(SNN)はスパースとイベント駆動のアクティベーションを活用して、モデル推論に関連する計算オーバーヘッドを削減する。
イベント駆動型スパイクアクティベーションユニットを用いた生成言語モデルを実装した。
SpikeGPTは、これまでで最大のバックプロパゲーション訓練SNNモデルであり、自然言語の生成と理解の両方に適している。
論文 参考訳(メタデータ) (2023-02-27T16:43:04Z) - Efficiently Trained Low-Resource Mongolian Text-to-Speech System Based
On FullConv-TTS [0.0]
本稿では,RNN成分(繰り返し単位)を用いない深層畳み込みニューラルネットワークに基づく音声合成システムを提案する。
同時に、時間ワープ、周波数マスク、時間マスクといった一連のデータ拡張手法により、モデルの汎用性とロバスト性を向上する。
最後に, CNN コンポーネントのみを用いた TTS モデルは,Tacotron などの古典的 TTS モデルと比較してトレーニング時間を短縮できることを示した。
論文 参考訳(メタデータ) (2022-10-24T14:18:43Z) - Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on
Riemannian Gradient Descent With Illustrations of Speech Processing [74.31472195046099]
我々は、低ランクテンソルトレイン深層ニューラルネットワーク(TT-DNN)を用いて、エンドツーエンドのディープラーニングパイプライン、すなわちLR-TT-DNNを構築する。
LR-TT-DNNと畳み込みニューラルネットワーク(CNN)を組み合わせたハイブリッドモデルを構築し、性能を向上する。
我々の実証的な証拠は、モデルパラメータが少ないLR-TT-DNNとCNN+(LR-TT-DNN)モデルが、TT-DNNとCNN+(LR-TT-DNN)モデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-03-11T15:55:34Z) - A Correspondence Variational Autoencoder for Unsupervised Acoustic Word
Embeddings [50.524054820564395]
そこで本稿では,変数分割音声セグメントを固定次元表現にマッピングするための教師なしモデルを提案する。
結果として得られる音響単語の埋め込みは、低リソース言語とゼロリソース言語のための検索、発見、インデックスシステムの基礎を形成することができる。
論文 参考訳(メタデータ) (2020-12-03T19:24:42Z) - Tensor train decompositions on recurrent networks [60.334946204107446]
マトリックス製品状態(MPS)テンソルトレインは、ストレージの削減と推論時の計算時間の観点から、MPOよりも魅力的な特徴を持つ。
理論解析により,MPSテンソル列車はLSTMネットワーク圧縮の最前線に置かれるべきであることを示す。
論文 参考訳(メタデータ) (2020-06-09T18:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。