論文の概要: ResNCT: A Deep Learning Model for the Synthesis of Nephrographic Phase Images in CT Urography
- arxiv url: http://arxiv.org/abs/2405.04629v2
- Date: Wed, 29 May 2024 02:12:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 22:42:17.555926
- Title: ResNCT: A Deep Learning Model for the Synthesis of Nephrographic Phase Images in CT Urography
- Title(参考訳): ResNCT:CT尿中ネフロート相画像の深層学習モデル
- Authors: Syed Jamal Safdar Gardezi, Lucas Aronson, Peter Wawrzyn, Hongkun Yu, E. Jason Abel, Daniel D. Shapiro, Meghan G. Lubner, Joshua Warner, Giuseppe Toia, Lu Mao, Pallavi Tiwari, Andrew L. Wentland,
- Abstract要約: ResNCTモデルは、非コントラストおよび尿路画像入力から合成ネフロート画像を生成することに成功した。
このモデルは、CTU検査に対する放射線線量33%の減少により、ネフローゼ相の獲得を除去する手段を提供する。
- 参考スコア(独自算出の注目度): 1.927688129012441
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Purpose: To develop and evaluate a transformer-based deep learning model for the synthesis of nephrographic phase images in CT urography (CTU) examinations from the unenhanced and urographic phases. Materials and Methods: This retrospective study was approved by the local Institutional Review Board. A dataset of 119 patients (mean $\pm$ SD age, 65 $\pm$ 12 years; 75/44 males/females) with three-phase CT urography studies was curated for deep learning model development. The three phases for each patient were aligned with an affine registration algorithm. A custom model, coined Residual transformer model for Nephrographic phase CT image synthesis (ResNCT), was developed and implemented with paired inputs of non-contrast and urographic sets of images trained to produce the nephrographic phase images, that were compared with the corresponding ground truth nephrographic phase images. The synthesized images were evaluated with multiple performance metrics, including peak signal to noise ratio (PSNR), structural similarity index (SSIM), normalized cross correlation coefficient (NCC), mean absolute error (MAE), and root mean squared error (RMSE). Results: The ResNCT model successfully generated synthetic nephrographic images from non-contrast and urographic image inputs. With respect to ground truth nephrographic phase images, the images synthesized by the model achieved high PSNR (27.8 $\pm$ 2.7 dB), SSIM (0.88 $\pm$ 0.05), and NCC (0.98 $\pm$ 0.02), and low MAE (0.02 $\pm$ 0.005) and RMSE (0.042 $\pm$ 0.016). Conclusion: The ResNCT model synthesized nephrographic phase CT images with high similarity to ground truth images. The ResNCT model provides a means of eliminating the acquisition of the nephrographic phase with a resultant 33% reduction in radiation dose for CTU examinations.
- Abstract(参考訳): 目的:CT urography(CTU)検査における腎画像合成のためのトランスフォーマーに基づく深層学習モデルの開発と評価を行う。
資料と方法: この振り返り研究は地方機関審査委員会によって承認された。
深層学習モデル開発のための3相CT尿路撮影を行った119例(平均SD年齢:65ドル:12歳:75/44男性/女性)のデータセットを作成した。
各患者の3段階はアフィン登録アルゴリズムで一致した。
ネフロート相CT画像合成(ResNCT)のための残留トランスフォーマモデル(Residual transformer model)を開発した。
合成画像は、ピーク信号対雑音比(PSNR)、構造類似度指数(SSIM)、正規化クロス相関係数(NCC)、平均絶対誤差(MAE)、ルート平均二乗誤差(RMSE)など、複数の性能指標を用いて評価した。
結果: ResNCTモデルは非コントラストおよび尿路画像入力から合成腎画像を生成することに成功した。
地上の真相のネフローグラフィー画像では、モデルによって合成された画像は、高いPSNR (27.8$\pm$ 2.7 dB)、SSIM (0.88$\pm$ 0.05)、NAC (0.98$\pm$ 0.02)、低いMAE (0.02$\pm$ 0.005)、RMSE (0.042$\pm$ 0.016) を達成した。
結論: ResNCT モデルにより, 地上の真理画像と高い類似性を有するネフロート相CT画像が合成された。
ResNCT モデルでは,CTU 試験において33% の放射線線量減少による腎症相の獲得を除去する手段を提供する。
関連論文リスト
- Deep Learning Based Apparent Diffusion Coefficient Map Generation from Multi-parametric MR Images for Patients with Diffuse Gliomas [1.5267759610392577]
拡散強調(DWI)MRIから得られたADCマップは、組織内の水分子に関する機能的測定を提供する。
本研究では,多パラメータMR画像からADCマップを合成するディープラーニングフレームワークを開発することを目的とする。
論文 参考訳(メタデータ) (2024-07-02T19:08:40Z) - Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation [2.4113205575263708]
本稿では,拡散確率モデル(DDPM)を用いて網膜光コヒーレンス断層撮影(OCT)画像を自動的に生成する画像合成手法を提案する。
階層分割の精度を一貫して改善し,様々なニューラルネットワークを用いて検証する。
これらの結果から,網膜CT画像の手動アノテーションの必要性が軽減される可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-09T16:09:24Z) - Synthetic CT Generation from MRI using 3D Transformer-based Denoising
Diffusion Model [2.232713445482175]
磁気共鳴イメージング(MRI)を用いたシンセティックCT(sCT)は放射線治療計画を簡単にする。
本稿では,MRIを高品質なsCTに変換するためのMRI-to-CT変換器を用いた denoising diffusion probabilistic model (MC-DDPM)を提案する。
論文 参考訳(メタデータ) (2023-05-31T00:32:00Z) - Generalizable synthetic MRI with physics-informed convolutional networks [57.628770497971246]
物理インフォームド・ディープ・ラーニング(Deep Learning-based)法を開発し,複数の脳磁気共鳴画像(MRI)のコントラストを1つの5分間の取得から合成する。
我々は、任意のコントラストに一般化し、ニューロイメージングプロトコルを加速する能力について検討する。
論文 参考訳(メタデータ) (2023-05-21T21:16:20Z) - Evaluation of Synthetically Generated CT for use in Transcranial Focused
Ultrasound Procedures [5.921808547303054]
経頭蓋骨集束超音波(TFUS)は、頭蓋骨を通して音を非侵襲的に、しばしばMRI誘導下で小さな領域に集束する治療用超音波法である。
CT画像は、個々の頭蓋骨間で異なる音響特性を推定するために使われ、tFUS手術中に効果的に焦点を合わせることができる。
そこで我々は,3Dパッチベースの条件付き生成対向ネットワーク(cGAN)を用いて,日常的に取得したT1強調MRIからCT画像を合成した。
我々は,Kranion を用いた tFUS 計画のための sCT と実CT (rCT) 画像を比較し,音響ツールボックスを用いたシミュレーションを行った。
論文 参考訳(メタデータ) (2022-10-26T15:15:24Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - SCREENet: A Multi-view Deep Convolutional Neural Network for
Classification of High-resolution Synthetic Mammographic Screening Scans [3.8137985834223502]
本研究では,高分解能合成マンモグラム解析のための多視点深層学習手法の開発と評価を行う。
画像解像度とトレーニングセットサイズが精度に与える影響を評価する。
論文 参考訳(メタデータ) (2020-09-18T00:12:33Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。