FRACTAL: An Ultra-Large-Scale Aerial Lidar Dataset for 3D Semantic Segmentation of Diverse Landscapes
- URL: http://arxiv.org/abs/2405.04634v4
- Date: Fri, 30 Aug 2024 19:58:02 GMT
- Title: FRACTAL: An Ultra-Large-Scale Aerial Lidar Dataset for 3D Semantic Segmentation of Diverse Landscapes
- Authors: Charles Gaydon, Michel Daab, Floryne Roche,
- Abstract summary: We present an ultra-large-scale aerial Lidar dataset made of 100,000 dense point clouds with high quality labels for 7 semantic classes.
We describe the data collection, annotation, and curation process of the dataset.
We provide baseline semantic segmentation results using a state of the art 3D point cloud classification model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mapping agencies are increasingly adopting Aerial Lidar Scanning (ALS) as a new tool to map buildings and other above-ground structures. Processing ALS data at scale requires efficient point classification methods that perform well over highly diverse territories. Large annotated Lidar datasets are needed to evaluate these classification methods, however, current Lidar benchmarks have restricted scope and often cover a single urban area. To bridge this data gap, we introduce the FRench ALS Clouds from TArgeted Landscapes (FRACTAL) dataset: an ultra-large-scale aerial Lidar dataset made of 100,000 dense point clouds with high quality labels for 7 semantic classes and spanning 250 km$^2$. FRACTAL achieves high spatial and semantic diversity by explicitly sampling rare classes and challenging landscapes from five different regions of France. We describe the data collection, annotation, and curation process of the dataset. We provide baseline semantic segmentation results using a state of the art 3D point cloud classification model. FRACTAL aims to support the development of 3D deep learning approaches for large-scale land monitoring.
Related papers
- MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - ECLAIR: A High-Fidelity Aerial LiDAR Dataset for Semantic Segmentation [0.5277756703318045]
ECLAIR is a new outdoor large-scale aerial LiDAR dataset designed specifically for advancing research in point cloud semantic segmentation.
The dataset covers a total area of 10$km2$ with close to 600 million points and features eleven distinct object categories.
The dataset is engineered to move forward the fields of 3D urban modeling, scene understanding, and utility infrastructure management.
arXiv Detail & Related papers (2024-04-16T16:16:40Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization.
We propose a new dataset, Navya 3D (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain.
It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds.
arXiv Detail & Related papers (2023-02-16T13:41:19Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
We introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km2.
Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset.
arXiv Detail & Related papers (2022-01-12T14:48:11Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
We present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points.
Our dataset consists of large areas from three UK cities, covering about 7.6 km2 of the city landscape.
We evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results.
arXiv Detail & Related papers (2020-09-07T14:47:07Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - DALES: A Large-scale Aerial LiDAR Data Set for Semantic Segmentation [8.486713415198972]
We present the Dayton Annotated LiDAR Earth Scan (DALES) data set, a new large-scale aerial LiDAR data set with over a half-billion hand-labeled points.
DALES is the most extensive publicly available ALS data set with over 400 times the number of points and six times the resolution of other currently available annotated aerial point cloud data sets.
arXiv Detail & Related papers (2020-04-14T20:05:28Z) - Weakly Supervised Attention Pyramid Convolutional Neural Network for
Fine-Grained Visual Classification [71.96618723152487]
We introduce Attention Pyramid Convolutional Neural Network (AP-CNN)
AP-CNN learns both high-level semantic and low-level detailed feature representation.
It can be trained end-to-end, without the need of additional bounding box/part annotations.
arXiv Detail & Related papers (2020-02-09T12:33:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.