An Enhanced Classification Method Based on Adaptive Multi-Scale Fusion for Long-tailed Multispectral Point Clouds
- URL: http://arxiv.org/abs/2412.11407v1
- Date: Mon, 16 Dec 2024 03:21:20 GMT
- Title: An Enhanced Classification Method Based on Adaptive Multi-Scale Fusion for Long-tailed Multispectral Point Clouds
- Authors: TianZhu Liu, BangYan Hu, YanFeng Gu, Xian Li, Aleksandra Pižurica,
- Abstract summary: We propose an enhanced classification method based on adaptive multi-scale fusion for MPCs with long-tailed distributions.
In the training set generation stage, a grid-balanced sampling strategy is designed to reliably generate training samples from sparse labeled datasets.
In the feature learning stage, a multi-scale feature fusion module is proposed to fuse shallow features of land-covers at different scales.
- Score: 67.96583737413296
- License:
- Abstract: Multispectral point cloud (MPC) captures 3D spatial-spectral information from the observed scene, which can be used for scene understanding and has a wide range of applications. However, most of the existing classification methods were extensively tested on indoor datasets, and when applied to outdoor datasets they still face problems including sparse labeled targets, differences in land-covers scales, and long-tailed distributions. To address the above issues, an enhanced classification method based on adaptive multi-scale fusion for MPCs with long-tailed distributions is proposed. In the training set generation stage, a grid-balanced sampling strategy is designed to reliably generate training samples from sparse labeled datasets. In the feature learning stage, a multi-scale feature fusion module is proposed to fuse shallow features of land-covers at different scales, addressing the issue of losing fine features due to scale variations in land-covers. In the classification stage, an adaptive hybrid loss module is devised to utilize multi-classification heads with adaptive weights to balance the learning ability of different classes, improving the classification performance of small classes due to various-scales and long-tailed distributions in land-covers. Experimental results on three MPC datasets demonstrate the effectiveness of the proposed method compared with the state-of-the-art methods.
Related papers
- Deep Subspace Learning for Surface Anomaly Classification Based on 3D Point Cloud Data [2.5524809198548137]
This paper proposes a novel deep subspace learning-based 3D anomaly classification model.
Specifically, we model each class as a subspace to account for the intra-class variation, while promoting distinct subspaces of different classes to tackle the inter-class similarity.
Our method achieves better anomaly classification results than benchmark methods, and can effectively identify the new types of anomalies.
arXiv Detail & Related papers (2025-02-17T10:57:53Z) - Enhancing Out-of-Distribution Detection with Multitesting-based Layer-wise Feature Fusion [11.689517005768046]
Out-of-distribution samples may exhibit shifts in local or global features compared to the training distribution.
We propose a novel framework, Multitesting-based Layer-wise Out-of-Distribution (OOD) Detection.
Our scheme effectively enhances the performance of out-of-distribution detection when compared to baseline methods.
arXiv Detail & Related papers (2024-03-16T04:35:04Z) - Deep Metric Learning for Computer Vision: A Brief Overview [4.980117530293724]
Objective functions that optimize deep neural networks play a vital role in creating an enhanced feature representation of the input data.
Deep Metric Learning seeks to develop methods that aim to measure the similarity between data samples.
We will provide an overview of recent progress in this area and discuss state-of-the-art Deep Metric Learning approaches.
arXiv Detail & Related papers (2023-12-01T21:53:36Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Tackling Long-Tailed Category Distribution Under Domain Shifts [50.21255304847395]
Existing approaches cannot handle the scenario where both issues exist.
We designed three novel core functional blocks including Distribution Calibrated Classification Loss, Visual-Semantic Mapping and Semantic-Similarity Guided Augmentation.
Two new datasets were proposed for this problem, named AWA2-LTS and ImageNet-LTS.
arXiv Detail & Related papers (2022-07-20T19:07:46Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
This paper proposes a novel federated learning approach for deep learning architectures in the medical domain.
Local-statistic batch normalization (BN) layers are introduced, resulting in collaboratively-trained, yet center-specific models.
We benchmark the proposed method on the classification of tumorous histopathology image patches extracted from the Camelyon16 and Camelyon17 datasets.
arXiv Detail & Related papers (2020-08-17T15:49:30Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.