Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking
- URL: http://arxiv.org/abs/2405.04685v1
- Date: Tue, 7 May 2024 21:58:45 GMT
- Title: Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking
- Authors: Emre Can Acikgoz, Mete Erdogan, Deniz Yuret,
- Abstract summary: Large Language Models (LLMs) are becoming crucial across various fields, emphasizing the urgency for high-quality models in underrepresented languages.
This study explores the unique challenges faced by low-resource languages, such as data scarcity, model selection, evaluation, and computational limitations.
- Score: 1.3716808114696444
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) are becoming crucial across various fields, emphasizing the urgency for high-quality models in underrepresented languages. This study explores the unique challenges faced by low-resource languages, such as data scarcity, model selection, evaluation, and computational limitations, with a special focus on Turkish. We conduct an in-depth analysis to evaluate the impact of training strategies, model choices, and data availability on the performance of LLMs designed for underrepresented languages. Our approach includes two methodologies: (i) adapting existing LLMs originally pretrained in English to understand Turkish, and (ii) developing a model from the ground up using Turkish pretraining data, both supplemented with supervised fine-tuning on a novel Turkish instruction-tuning dataset aimed at enhancing reasoning capabilities. The relative performance of these methods is evaluated through the creation of a new leaderboard for Turkish LLMs, featuring benchmarks that assess different reasoning and knowledge skills. Furthermore, we conducted experiments on data and model scaling, both during pretraining and fine-tuning, simultaneously emphasizing the capacity for knowledge transfer across languages and addressing the challenges of catastrophic forgetting encountered during fine-tuning on a different language. Our goal is to offer a detailed guide for advancing the LLM framework in low-resource linguistic contexts, thereby making natural language processing (NLP) benefits more globally accessible.
Related papers
- Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
We investigate how pre-trained Large Language Models can be leveraged to predict in context the dynamics of continuous Markov decision processes.
We present proof-of-concept applications in two reinforcement learning settings: model-based policy evaluation and data-augmented off-policy reinforcement learning.
arXiv Detail & Related papers (2024-10-15T15:46:53Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
We introduce a novel MoE-CT architecture that separates the base model's learning from the multilingual expansion process.
Our design freezes the original LLM parameters, thus safeguarding its performance in high-resource languages, while an appended MoE module, trained on diverse language datasets, augments low-resource language proficiency.
arXiv Detail & Related papers (2024-06-25T11:03:45Z) - Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance [6.907734681124986]
This paper strategically identifies the need for linguistic equity by examining several knowledge editing techniques in multilingual contexts.
We evaluate the performance of models such as Mistral, TowerInstruct, OpenHathi, Tamil-Llama, and Kan-Llama across languages including English, German, French, Italian, Spanish, Hindi, Tamil, and Kannada.
arXiv Detail & Related papers (2024-06-17T01:54:27Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
We propose a question alignment framework to bridge the gap between large language models' English and non-English performance.
Experiment results show it can boost multilingual performance across diverse reasoning scenarios, model families, and sizes.
We analyze representation space, generated response and data scales, and reveal how question translation training strengthens language alignment within LLMs.
arXiv Detail & Related papers (2024-05-02T14:49:50Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
Supervised fine-tuning (SFT), supervised instruction tuning (SIT) and in-context learning (ICL) are three alternative, de facto standard approaches to few-shot learning.
We present an extensive and systematic comparison of the three approaches, testing them on 6 high- and low-resource languages, three different NLU tasks, and a myriad of language and domain setups.
Our observations show that supervised instruction tuning has the best trade-off between performance and resource requirements.
arXiv Detail & Related papers (2024-03-04T10:48:13Z) - PLUG: Leveraging Pivot Language in Cross-Lingual Instruction Tuning [46.153828074152436]
We propose a pivot language guided generation approach to enhance instruction tuning in lower-resource languages.
It trains the model to first process instructions in the pivot language, and then produce responses in the target language.
Our approach demonstrates a significant improvement in the instruction-following abilities of LLMs by 29% on average.
arXiv Detail & Related papers (2023-11-15T05:28:07Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
We propose an efficient modeling framework for cross-lingual named entity recognition in semi-structured text data.
We employ two independent datasets of SMSs in English and Arabic, each carrying semi-structured banking transaction information.
With access to only 30 labeled samples, our model can generalize the recognition of merchants, amounts, and other fields from English to Arabic.
arXiv Detail & Related papers (2023-07-16T00:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.