The Impact of Human Aspects on the Interactions Between Software Developers and End-Users in Software Engineering: A Systematic Literature Review
- URL: http://arxiv.org/abs/2405.04787v1
- Date: Wed, 8 May 2024 03:38:36 GMT
- Title: The Impact of Human Aspects on the Interactions Between Software Developers and End-Users in Software Engineering: A Systematic Literature Review
- Authors: Hashini Gunatilake, John Grundy, Rashina Hoda, Ingo Mueller,
- Abstract summary: We present a systematic review of studies on human aspects affecting developer-user interactions.
We identified various human aspects affecting developer-user interactions in 46 studies.
Our findings suggest the importance of leveraging positive effects and addressing negative effects in developer-user interactions.
- Score: 10.307654003138401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context: Research on human aspects within the field of software engineering (SE) has been steadily gaining prominence in recent years. These human aspects have a significant impact on SE due to the inherently interactive and collaborative nature of the discipline. Objective: In this paper, we present a systematic literature review (SLR) on human aspects affecting developer-user interactions. The objective of this SLR is to plot the current landscape of primary studies by examining the human aspects that influence developer-user interactions, their implications, interrelationships, and how existing studies address these implications. Method: We conducted this SLR following the guidelines proposed by Kitchenham et al. We performed a comprehensive search in six digital databases, and an exhaustive backward and forward snowballing process. We selected 46 primary studies for data extraction. Results: We identified various human aspects affecting developer-user interactions in SE, assessed their interrelationships, identified their positive impacts and mitigation strategies for negative effects. We present specific recommendations derived from the identified research gaps. Conclusion: Our findings suggest the importance of leveraging positive effects and addressing negative effects in developer-user interactions through the implementation of effective mitigation strategies. These insights may benefit software practitioners for effective user interactions, and the recommendations proposed by this SLR may aid the research community in further human aspects related studies.
Related papers
- Understanding the Human-LLM Dynamic: A Literature Survey of LLM Use in Programming Tasks [0.850206009406913]
Large Language Models (LLMs) are transforming programming practices, offering significant capabilities for code generation activities.
This paper focuses on their use in programming tasks, drawing insights from user studies that assess the impact of LLMs on programming tasks.
arXiv Detail & Related papers (2024-10-01T19:34:46Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
We examined over 16,000 papers from selected conferences in multimodal interaction, affective computing, and natural language processing.
We identify 910 affect-related papers and present our analysis of the role of affective phenomena in these papers.
We find limited research on how affect and emotion predictions might be used by AI systems to enhance machine understanding of human social behaviors and cognitive states.
arXiv Detail & Related papers (2023-05-18T09:08:39Z) - The Impact of Personality on Requirements Engineering Activities: A
Mixed-Methods Study [10.850726111343064]
The objective of this study is to explore and identify the impact of personality on Requirements Engineering activities.
We found a range of impacts related to the personality traits of software practitioners, their team members, and external stakeholders.
We found a set of strategies that can be applied to mitigate the negative impact of personality on RE activities.
arXiv Detail & Related papers (2022-10-13T01:25:00Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Homophily and Incentive Effects in Use of Algorithms [17.55279695774825]
We present a crowdsourcing vignette study designed to assess the impacts of two plausible factors on AI-informed decision-making.
First, we examine homophily -- do people defer more to models that tend to agree with them?
Second, we consider incentives -- how do people incorporate a (known) cost structure in the hybrid decision-making setting?
arXiv Detail & Related papers (2022-05-19T17:11:04Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Unpacking the Expressed Consequences of AI Research in Broader Impact
Statements [23.3030110636071]
We present the results of a thematic analysis of a sample of statements written for the 2020 Neural Information Processing Systems conference.
The themes we identify fall into categories related to how consequences are expressed and areas of impacts expressed.
In light of our results, we offer perspectives on how the broader impact statement can be implemented in future iterations to better align with potential goals.
arXiv Detail & Related papers (2021-05-11T02:57:39Z) - Investigating Human Response, Behaviour, and Preference in Joint-Task
Interaction [3.774610219328564]
We have designed an experiment in order to examine human behaviour and response as they interact with Explainable Planning (XAIP) agents.
We also present the results from an empirical analysis where we examined the behaviour of the two agents for simulated users.
arXiv Detail & Related papers (2020-11-27T22:16:59Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.