Universality and two-body losses: lessons from the effective non-Hermitian dynamics of two particles
- URL: http://arxiv.org/abs/2405.04789v2
- Date: Thu, 31 Oct 2024 10:06:53 GMT
- Title: Universality and two-body losses: lessons from the effective non-Hermitian dynamics of two particles
- Authors: Alice Marché, Hironobu Yoshida, Alberto Nardin, Hosho Katsura, Leonardo Mazza,
- Abstract summary: We study the late-time dynamics of two particles confined in one dimension and subject to two-body losses.
The dynamics is exactly described by a non-Hermitian Hamiltonian that can be analytically studied both in the continuum and on a lattice.
- Score: 0.0
- License:
- Abstract: We study the late-time dynamics of two particles confined in one spatial dimension and subject to two-body losses. The dynamics is exactly described by a non-Hermitian Hamiltonian that can be analytically studied both in the continuum and on a lattice. The asymptotic decay rate and the universal power-law form of the decay of the number of particles are exactly computed in the whole parameter space of the problem. When in the initial state the two particles are far apart, the average number of particles in the setup decays with time $t$ as $t^{-1/2}$; a different power law, $t^{-3/2}$, is found when the two particles overlap in the initial state. These results are valid both in the continuum and on a lattice, but in the latter case a logarithmic correction appears.
Related papers
- Condensates Breaking Up Under Rotation [0.0]
We find that the density breaks up along the $x$ direction in position space and along the $p_y$ direction in momentum space.
All in all, the rotating bosons are found to possess unique correlations at the limit of an infinite number of particles.
arXiv Detail & Related papers (2024-01-30T14:21:23Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Open Quantum Systems with Kadanoff-Baym Equations [0.0]
We study quantum mechanical fermionic particles exhibiting one bound state within a one-dimensional attractive square-well potential in a heat bath of bosonic particles.
For this open quantum system we formulate the non-equilibrium Kadanoff-Baym equations for the system particles.
The corresponding spatially imhomogeneous integro-differential equations for the one-particle Greens's function are solved numerically.
arXiv Detail & Related papers (2023-08-15T09:19:21Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Ultralight dark matter or dark radiation cosmologically produced from
infrared dressing [0.0]
We find a striking resemblance to the process of particle decay: the initial amplitude of the single particle decays in time.
At long time the entanglement state is an entangled state of the heavy and massless particles.
The entropy is shown to grow under time evolution describing the flow of information from the initial single particle to the final multiparticle state.
arXiv Detail & Related papers (2021-10-29T01:45:04Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Solvable model of a generic driven mixture of trapped Bose-Einstein
condensates and properties of a many-boson Floquet state at the limit of an
infinite number of particles [0.0]
A solvable model of a periodically-driven mixture of Bose-Einstein condensates is presented.
The model generalizes the harmonic-interaction model for the time-dependent domain.
We investigate the imprinting of momentum and its fluctuations when steering a Bose-Einstein condensate by an interacting bosonic impurity.
arXiv Detail & Related papers (2020-10-29T15:01:59Z) - Real-time dynamics in 2+1d compact QED using complex periodic Gaussian
states [0.688204255655161]
We introduce a class of variational states to study ground state properties and real-time dynamics in (2+1)-dimensional compact QED.
We calculate the ground state energy density for lattice sizes up to $20 times 20$ and extrapolate to the thermodynamic limit for the whole coupling region.
arXiv Detail & Related papers (2020-06-17T17:58:08Z) - Feynman Propagator for a System of Interacting Scalar Particles in the
Fokker Theory [62.997667081978825]
The functional integral on the generalized phase space is defined as the initial one in quantum theory.
The measure of integration in the generalized configuration space of world particle lines is determined.
A modification of the propagator is proposed, in which the role of independent time parameters is taken by the time coordinates of the particles in Minkowski space.
arXiv Detail & Related papers (2020-02-10T09:09:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.