Signature of matter-field coupling in quantum-mechanical statistics
- URL: http://arxiv.org/abs/2504.03142v1
- Date: Fri, 04 Apr 2025 03:36:31 GMT
- Title: Signature of matter-field coupling in quantum-mechanical statistics
- Authors: Ana María Cetto, Luis de la Peña,
- Abstract summary: The connection between the intrinsic angular momentum (spin) of particles and the quantum statistics is established.<n>Two types of particles are distinguished by their symmetry or antisymmetry with respect to particle exchange.<n>The introduction of an internal rotation parameter leads to a direct link between spin and statistics and to a physical rationale for the Pauli exclusion principle.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The connection between the intrinsic angular momentum (spin) of particles and the quantum statistics is established by considering the response of identical particles to a common background radiation field. For this purpose, the Hamiltonian analysis previously performed in stochastic electrodynamics to derive the quantum description of a one-particle system is extended to a system of two identical bound particles subject to the same field. Depending on the relative phase of the response of the particles to a common field mode, two types of particles are distinguished by their symmetry or antisymmetry with respect to particle exchange. While any number of identical particles responding in phase can occupy the same energy state, there can only be two particles responding in antiphase. Calculation of bipartite correlations between the response functions reveals maximum entanglement as a consequence of the parallel response of the particles to the common field. The introduction of an internal rotation parameter leads to a direct link between spin and statistics and to a physical rationale for the Pauli exclusion principle.
Related papers
- Impact of a tunneling particle on the quantum state of a barrier: two-particle wave-packet model [0.0]
We find that the states of the barrier particle after the tunneling or reflection of the projectile are displaced by a finite distance.
Our work demonstrates physical implication of the concept of phase time delay in the form of finite displacements of particles.
arXiv Detail & Related papers (2025-04-23T09:53:32Z) - Quantum walk on a square lattice with identical particles [0.0]
We investigate quantum superposition effects in two-dimensional quantum walks of identical particles with different statistics under particle exchange.
We focus on joint properties such as two-particle coincidence probabilities and the spread velocity of the inter-particle distance.
We discuss the potential for implementing this model using integrated photonic circuits by exploiting $N$-partite entanglement between individual photons.
arXiv Detail & Related papers (2025-04-15T11:33:08Z) - Analytical solutions for the quantum Brownian motion of a particle during a quantum quench [0.0]
A particle subjected to a fluctuating force originated from its interaction with an external quantum system.<n>Brownian motion is characterized from the perspective of the energy extracted from the reservoir.
arXiv Detail & Related papers (2025-01-28T01:11:35Z) - Experimental realization of entanglement between two Brownian particles [0.0]
Uncertainty relations between coordinates and coarse-grained velocity can produce a phenomenon similar to quantum entanglement.<n>The interconnected particles exhibit Brownian quantum-inspired classical correlation entanglement.
arXiv Detail & Related papers (2024-08-13T08:07:32Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Non-Rayleigh signal of interacting quantum particles [0.0]
The dynamics of two interacting quantum particles on a weakly disordered chain is investigated.
The fluctuation profile of the signal can discern whether the interacting parties are behaving like identical bosons, fermions, or distinguishable particles.
arXiv Detail & Related papers (2023-05-02T18:59:37Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Exact quantum-mechanical equations for particle beams [91.3755431537592]
These equations present the exact generalizations of the well-known paraxial equations in optics.
Some basic properties of exact wave eigenfunctions of particle beams have been determined.
arXiv Detail & Related papers (2022-06-29T20:39:36Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Dynamical symmetrization of the state of identical particles [0.0]
We propose a model for state symmetrization of two identical particles produced in spacelike-separated events by independent sources.
As the particles approach each other, a quantum jump takes place upon particle collision, which erases their distinguishability.
We show that symmetric measurements performed on identical particles can in principle discriminate between the product and symmetrized states.
arXiv Detail & Related papers (2020-11-17T18:56:28Z) - Feynman Propagator for a System of Interacting Scalar Particles in the
Fokker Theory [62.997667081978825]
The functional integral on the generalized phase space is defined as the initial one in quantum theory.
The measure of integration in the generalized configuration space of world particle lines is determined.
A modification of the propagator is proposed, in which the role of independent time parameters is taken by the time coordinates of the particles in Minkowski space.
arXiv Detail & Related papers (2020-02-10T09:09:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.