論文の概要: A Novel Technique for Query Plan Representation Based on Graph Neural Nets
- arxiv url: http://arxiv.org/abs/2405.04814v2
- Date: Wed, 5 Jun 2024 07:27:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 00:09:48.204974
- Title: A Novel Technique for Query Plan Representation Based on Graph Neural Nets
- Title(参考訳): グラフニューラルネットに基づくクエリプラン表現の新しい手法
- Authors: Baoming Chang, Amin Kamali, Verena Kantere,
- Abstract要約: 本研究では,異なる木モデルを用いたアグリゲードのコスト推定と計画選択性能への影響について検討する。
本稿では, Gated Recurrent Unit (GRU) によるGNNを用いたツリーモデルBiGGを提案する。
- 参考スコア(独自算出の注目度): 2.184775414778289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning representations for query plans play a pivotal role in machine learning-based query optimizers of database management systems. To this end, particular model architectures are proposed in the literature to transform the tree-structured query plans into representations with formats learnable by downstream machine learning models. However, existing research rarely compares and analyzes the query plan representation capabilities of these tree models and their direct impact on the performance of the overall optimizer. To address this problem, we perform a comparative study to explore the effect of using different state-of-the-art tree models on the optimizer's cost estimation and plan selection performance in relatively complex workloads. Additionally, we explore the possibility of using graph neural networks (GNNs) in the query plan representation task. We propose a novel tree model BiGG employing Bidirectional GNN aggregated by Gated recurrent units (GRUs) and demonstrate experimentally that BiGG provides significant improvements to cost estimation tasks and relatively excellent plan selection performance compared to the state-of-the-art tree models.
- Abstract(参考訳): クエリプランの学習表現は、データベース管理システムの機械学習ベースのクエリオプティマイザにおいて重要な役割を果たす。
この目的のために、木構造クエリプランを下流機械学習モデルで学習可能なフォーマットで表現に変換するために、特定のモデルアーキテクチャが文献で提案されている。
しかし、既存の研究では、これらのツリーモデルのクエリプラン表現能力と、全体的なオプティマイザの性能に対する直接的な影響を比較し、分析することはめったにない。
この問題に対処するために、我々は、比較的複雑なワークロードにおいて、最適化者のコスト推定と計画選択性能に異なる最先端ツリーモデルを使用することの効果を比較検討する。
さらに、クエリ計画表現タスクでグラフニューラルネットワーク(GNN)を使用する可能性についても検討する。
本稿では, Gated Recurrent Unit (GRU) で集約された双方向GNNを用いたツリーモデルBiGGを提案する。
関連論文リスト
- Towards Lightweight Graph Neural Network Search with Curriculum Graph Sparsification [48.334100429553644]
本稿では,有意義なグラフデータを通じて重要なサブアーキテクチャを識別する結合グラフデータとアーキテクチャ機構を設計することを提案する。
最適軽量グラフニューラルネット(GNN)を探索するために,グラフスペーシングとネットワーク・プルーニング(GASSIP)法を用いた軽量グラフニューラル・アーキテクチャ・サーチを提案する。
本手法は,探索したGNNとスペーサーグラフのモデルパラメータを半分以下にすることで,オンパーあるいはそれ以上高いノード分類性能を実現する。
論文 参考訳(メタデータ) (2024-06-24T06:53:37Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
知識グラフ(KG)から得られた計画データを用いて,大規模言語モデル(LLM)計画能力を向上するための新しいフレームワークを提案する。
KGデータで微調整されたLLMは、計画能力を向上し、検索を含む複雑なQAタスクを処理するのがより適している。
論文 参考訳(メタデータ) (2024-06-20T13:07:38Z) - Analysing the Behaviour of Tree-Based Neural Networks in Regression Tasks [3.912345988363511]
本稿では、回帰課題の文脈において、木に基づくニューラルネットワークモデルの振る舞いを復号化するための取り組みを行う。
我々は,ツリーベースのCNN,Code2Vec,Transformerベースのメソッドといった確立されたモデルの応用を拡張し,ASTに解析することでソースコードの実行時間を予測する。
提案するデュアルトランスは,多様なデータセットにまたがる顕著な適応性とロバストな性能を示す。
論文 参考訳(メタデータ) (2024-06-17T11:47:14Z) - Learning Topological Representations with Bidirectional Graph Attention Network for Solving Job Shop Scheduling Problem [27.904195034688257]
既存の学習に基づくジョブショップスケジューリング問題の解法(JSSP)は、通常、非方向性グラフに適した既製のGNNモデルを使用し、解離グラフ(DG)のリッチで有意義な位相構造を無視する。
本稿では,JSSP を解決するための DG を局所検索フレームワークに組み込むためのトポロジ対応双方向グラフアテンションネットワーク (TBGAT) を提案する。
論文 参考訳(メタデータ) (2024-02-27T15:33:20Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model
Perspective [67.25782152459851]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Graph Neural Bandits [49.85090929163639]
グラフニューラルネットワーク(GNN)によって強化されたユーザ間の協調性を生かしたグラフニューラルバンド(GNB)というフレームワークを提案する。
提案手法を改良するために,推定ユーザグラフ上の別々のGNNモデルを用いて,エクスプロイトと適応探索を行う。
論文 参考訳(メタデータ) (2023-08-21T15:57:57Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Visual Learning-based Planning for Continuous High-Dimensional POMDPs [81.16442127503517]
Visual Tree Search (VTS)は、オフラインで学習した生成モデルとオンラインモデルベースのPOMDP計画を組み合わせた学習と計画の手順である。
VTSは、モンテカルロの木探索プランナーにおける画像観測の可能性を予測し評価するために、一連の深部生成観測モデルを利用することで、オフラインモデルトレーニングとオンラインプランニングを橋渡しする。
VTSは、異なる観測ノイズに対して堅牢であり、オンラインのモデルベースプランニングを利用するため、再トレーニングを必要とせずに、異なる報酬構造に適応できることを示す。
論文 参考訳(メタデータ) (2021-12-17T11:53:31Z) - An Investigation Between Schema Linking and Text-to-SQL Performance [21.524953580249395]
近年のニューラルアプローチは優れたパフォーマンスをもたらすが、将来の発展を妨げるのが難しいモデルである。
本研究の目的は,ニューラルネットワークの解釈に対するより良いアプローチを提供することである。
論文 参考訳(メタデータ) (2021-02-03T02:50:10Z) - Hierarchical BiGraph Neural Network as Recommendation Systems [0.0]
本稿では,GNNをレコメンデーションシステムとして使用し,ビグラフフレームワークを用いてユーザイテム機能を構築する階層的アプローチを提案する。
実験の結果,現在の推薦システム手法と伝達性との競合性能が示された。
論文 参考訳(メタデータ) (2020-07-27T18:01:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。