論文の概要: Systematic review, analysis, and characterisation of malicious industrial network traffic datasets for aiding Machine Learning algorithm performance testing
- arxiv url: http://arxiv.org/abs/2405.04866v1
- Date: Wed, 8 May 2024 07:48:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:04:15.618184
- Title: Systematic review, analysis, and characterisation of malicious industrial network traffic datasets for aiding Machine Learning algorithm performance testing
- Title(参考訳): 機械学習アルゴリズムの性能テストを支援する悪質な産業用ネットワークトラフィックデータセットの体系的レビュー、分析、特徴付け
- Authors: Martin Dobler, Michael Hellwig, Nuno Lopes, Ken Oakley, Mike Winterburn,
- Abstract要約: 本稿では,公開可能なネットワークトラフィックキャプチャに基づくデータセットを体系的にレビューする。
これには、含まれた攻撃タイプの分類、メタデータのレビュー、統計分析、複雑さ分析が含まれる。
研究者にメタデータを提供し、研究の質問に最適なデータセットを選択するのに使用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The adoption of the Industrial Internet of Things (IIoT) as a complementary technology to Operational Technology (OT) has enabled a new level of standardised data access and process visibility. This convergence of Information Technology (IT), OT, and IIoT has also created new cybersecurity vulnerabilities and risks that must be managed. Artificial Intelligence (AI) is emerging as a powerful tool to monitor OT/IIoT networks for malicious activity and is a highly active area of research. AI researchers are applying advanced Machine Learning (ML) and Deep Learning (DL) techniques to the detection of anomalous or malicious activity in network traffic. They typically use datasets derived from IoT/IIoT/OT network traffic captures to measure the performance of their proposed approaches. Therefore, there is a widespread need for datasets for algorithm testing. This work systematically reviews publicly available network traffic capture-based datasets, including categorisation of contained attack types, review of metadata, and statistical as well as complexity analysis. Each dataset is analysed to provide researchers with metadata that can be used to select the best dataset for their research question. This results in an added benefit to the community as researchers can select the best dataset for their research more easily and according to their specific Machine Learning goals.
- Abstract(参考訳): 運用技術(OT)の補完技術としてのIndustrial Internet of Things(IIoT)の採用により、新しいレベルの標準化されたデータアクセスとプロセスの可視性を実現した。
このIT(Information Technology)、OT(OT)、IIoT(IIoT)の収束は、管理しなければならない新たなサイバーセキュリティ脆弱性やリスクも生み出している。
悪意ある活動のためにOT/IIoTネットワークを監視する強力なツールとして人工知能(AI)が登場し、非常に活発な研究領域である。
AI研究者は、ネットワークトラフィックにおける異常や悪意のあるアクティビティの検出に高度な機械学習(ML)とディープラーニング(DL)技術を適用している。
彼らは通常、提案されたアプローチのパフォーマンスを測定するために、IoT/IIoT/OTネットワークトラフィックキャプチャから派生したデータセットを使用する。
したがって、アルゴリズムテストのためのデータセットが広く必要である。
この研究は、包含された攻撃型の分類、メタデータのレビュー、および複雑性分析を含む、公開可能なネットワークトラフィックキャプチャベースのデータセットを体系的にレビューする。
各データセットは分析され、研究者に研究質問に最適なデータセットを選択するのに使用できるメタデータが提供される。
これにより、研究者は研究のための最適なデータセットを、特定の機械学習の目標に従ってより容易に選択できるため、コミュニティにさらなる利益をもたらすことができる。
関連論文リスト
- Enhanced Anomaly Detection in Industrial Control Systems aided by Machine Learning [2.2457306746668766]
本研究は,ICS環境におけるネットワークデータとプロセスデータの組み合わせによる攻撃検出の改善について検討する。
この結果から,ネットワークトラフィックと運用プロセスデータの統合により,検出能力が向上することが示唆された。
結果は有望だが、彼らは予備的であり、さらなる研究の必要性を強調している。
論文 参考訳(メタデータ) (2024-10-25T17:41:33Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - IoT Network Traffic Analysis with Deep Learning [8.998282428714797]
我々は,最新の研究について,ディープラーニング技術を用いて文献レビューを行い,KDDカップ99データセット上でアンサンブル手法を用いてモデルを実装した。
実験の結果, 深部異常検出モデルの優れた性能を示し, 98%以上の精度を実現した。
論文 参考訳(メタデータ) (2024-02-06T23:28:15Z) - TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns
for Intrusion Detection [0.5261718469769447]
既存のデータセットは、しばしば不足しており、必要な多様性と現在のネットワーク環境との整合性が欠如している。
本稿では,これらの課題を克服するための新しい包括的データセットであるTII-SSRC-23を紹介する。
論文 参考訳(メタデータ) (2023-09-14T05:23:36Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - How Can Subgroup Discovery Help AIOps? [0.0]
サブグループディスカバリがAIOpsにどのように役立つかを研究する。
このプロジェクトには、フランスのソフトウェアエディタであるInfologicalのデータマイニングの研究者と実践者の両方が含まれる。
論文 参考訳(メタデータ) (2021-09-10T14:41:02Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
本稿では, 特徴量削減 (FR) と機械学習 (ML) の手法が, 様々なデータセットにまたがって一般化できるかどうかを明らかにすることを目的とする。
主成分分析(PCA)、自動エンコーダ(AE)、線形識別分析(LDA)の3つの特徴抽出(FE)アルゴリズムの検出精度を評価する。
論文 参考訳(メタデータ) (2021-08-28T23:52:18Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。