Machine Learning-based NLP for Emotion Classification on a Cholera X Dataset
- URL: http://arxiv.org/abs/2405.04897v1
- Date: Wed, 8 May 2024 09:05:02 GMT
- Title: Machine Learning-based NLP for Emotion Classification on a Cholera X Dataset
- Authors: Paul Jideani, Aurona Gerber,
- Abstract summary: This study aims to examine the emotions expressed in social media posts about Cholera.
The Python Nat-ural Language Toolkit (NLTK) sentiment analyzer library was applied to deter-mine the emotional significance of each text.
The results of this study demonstrated that LSTM achieved the highest accuracy of 75%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent social media posts on the cholera outbreak in Hammanskraal have highlighted the diverse range of emotions people experienced in response to such an event. The extent of people's opinions varies greatly depending on their level of knowledge and information about the disease. The documented re-search about Cholera lacks investigations into the classification of emotions. This study aims to examine the emotions expressed in social media posts about Chol-era. A dataset of 23,000 posts was extracted and pre-processed. The Python Nat-ural Language Toolkit (NLTK) sentiment analyzer library was applied to deter-mine the emotional significance of each text. Additionally, Machine Learning (ML) models were applied for emotion classification, including Long short-term memory (LSTM), Logistic regression, Decision trees, and the Bidirectional En-coder Representations from Transformers (BERT) model. The results of this study demonstrated that LSTM achieved the highest accuracy of 75%. Emotion classification presents a promising tool for gaining a deeper understanding of the impact of Cholera on society. The findings of this study might contribute to the development of effective interventions in public health strategies.
Related papers
- Emotion-Aware Response Generation Using Affect-Enriched Embeddings with LLMs [0.585143166250719]
This study addresses the challenge of enhancing the emotional and contextual understanding of large language models (LLMs) in psychiatric applications.
We introduce a novel framework that integrates multiple emotion lexicons, with state-of-the-art LLMs such as LLAMA 2, Flan-T5, ChatGPT 3.0, and ChatGPT 4.0.
The primary dataset comprises over 2,000 therapy session transcripts from the Counseling and Psychotherapy database, covering discussions on anxiety, depression, trauma, and addiction.
arXiv Detail & Related papers (2024-10-02T08:01:05Z) - DepressionEmo: A novel dataset for multilabel classification of
depression emotions [6.26397257917403]
DepressionEmo is a dataset designed to detect 8 emotions associated with depression by 6037 examples of long Reddit user posts.
This dataset was created through a majority vote over inputs by zero-shot classifications from pre-trained models.
We provide several text classification methods classified into two groups: machine learning methods such as SVM, XGBoost, and Light GBM; and deep learning methods such as BERT, GAN-BERT, and BART.
arXiv Detail & Related papers (2024-01-09T16:25:31Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
sociodemographic prompting is a technique that steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give.
We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.
arXiv Detail & Related papers (2023-09-13T15:42:06Z) - Probing Brain Context-Sensitivity with Masked-Attention Generation [87.31930367845125]
We use GPT-2 transformers to generate word embeddings that capture a fixed amount of contextual information.
We then tested whether these embeddings could predict fMRI brain activity in humans listening to naturalistic text.
arXiv Detail & Related papers (2023-05-23T09:36:21Z) - The MuSe 2023 Multimodal Sentiment Analysis Challenge: Mimicked
Emotions, Cross-Cultural Humour, and Personalisation [69.13075715686622]
MuSe 2023 is a set of shared tasks addressing three different contemporary multimodal affect and sentiment analysis problems.
MuSe 2023 seeks to bring together a broad audience from different research communities.
arXiv Detail & Related papers (2023-05-05T08:53:57Z) - Machine Learning Algorithms for Depression Detection and Their
Comparison [0.0]
We have designed an automatic depression detection of online social media users by analyzing their social media behavior.
The underlying classifier is made using state-of-art technology in emotional artificial intelligence.
arXiv Detail & Related papers (2023-01-09T09:34:38Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - The MuSe 2022 Multimodal Sentiment Analysis Challenge: Humor, Emotional
Reactions, and Stress [71.06453250061489]
The Multimodal Sentiment Analysis Challenge (MuSe) 2022 is dedicated to multimodal sentiment and emotion recognition.
For this year's challenge, we feature three datasets: (i) the Passau Spontaneous Football Coach Humor dataset that contains audio-visual recordings of German football coaches, labelled for the presence of humour; (ii) the Hume-Reaction dataset in which reactions of individuals to emotional stimuli have been annotated with respect to seven emotional expression intensities; and (iii) the Ulm-Trier Social Stress Test dataset comprising of audio-visual data labelled with continuous emotion values of people in stressful dispositions.
arXiv Detail & Related papers (2022-06-23T13:34:33Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
We will comprehensively review the development of affective image content analysis (AICA) in the recent two decades.
We will focus on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence.
We discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
arXiv Detail & Related papers (2021-06-30T15:20:56Z) - Sentiment and Emotion Classification of Epidemic Related Bilingual data
from Social Media [1.7109522466982476]
The study exploits the bilingual (Urdu and English) data from Twitter and NEWS websites related to the dengue epidemic in Pakistan.
The proposed study exploits the bilingual (Urdu and English) data from Twitter and NEWS websites related to the dengue epidemic in Pakistan.
arXiv Detail & Related papers (2021-05-04T12:51:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.