Emotion-Aware Response Generation Using Affect-Enriched Embeddings with LLMs
- URL: http://arxiv.org/abs/2410.01306v1
- Date: Wed, 2 Oct 2024 08:01:05 GMT
- Title: Emotion-Aware Response Generation Using Affect-Enriched Embeddings with LLMs
- Authors: Abdur Rasool, Muhammad Irfan Shahzad, Hafsa Aslam, Vincent Chan,
- Abstract summary: This study addresses the challenge of enhancing the emotional and contextual understanding of large language models (LLMs) in psychiatric applications.
We introduce a novel framework that integrates multiple emotion lexicons, with state-of-the-art LLMs such as LLAMA 2, Flan-T5, ChatGPT 3.0, and ChatGPT 4.0.
The primary dataset comprises over 2,000 therapy session transcripts from the Counseling and Psychotherapy database, covering discussions on anxiety, depression, trauma, and addiction.
- Score: 0.585143166250719
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a need for empathetic and coherent responses in automated chatbot-facilitated psychotherapy sessions. This study addresses the challenge of enhancing the emotional and contextual understanding of large language models (LLMs) in psychiatric applications. We introduce a novel framework that integrates multiple emotion lexicons, including NRC Emotion Lexicon, VADER, WordNet, and SentiWordNet, with state-of-the-art LLMs such as LLAMA 2, Flan-T5, ChatGPT 3.0, and ChatGPT 4.0. The primary dataset comprises over 2,000 therapy session transcripts from the Counseling and Psychotherapy database, covering discussions on anxiety, depression, trauma, and addiction. We segment the transcripts into smaller chunks, enhancing them with lexical features and computing embeddings using BERT, GPT-3, and RoBERTa to capture semantic and emotional nuances. These embeddings are stored in a FAISS vector database, enabling efficient similarity search and clustering based on cosine similarity. Upon user query, the most relevant segments are retrieved and provided as context to the LLMs, significantly improving the models' ability to generate empathetic and contextually appropriate responses. Experimental evaluations demonstrate that in-corporating emotion lexicons enhances empathy, coherence, informativeness, and fluency scores. Our findings highlight the critical role of emotional embeddings in improving LLM performance for psychotherapy.
Related papers
- Towards Empathetic Conversational Recommender Systems [77.53167131692]
We propose an empathetic conversational recommender (ECR) framework.
ECR contains two main modules: emotion-aware item recommendation and emotion-aligned response generation.
Our experiments on the ReDial dataset validate the efficacy of our framework in enhancing recommendation accuracy and improving user satisfaction.
arXiv Detail & Related papers (2024-08-30T15:43:07Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
Large language models (LLMs) have been validated, providing new possibilities for psychological assistance therapy.
Many concerns have been raised by mental health experts regarding the use of LLMs for therapy.
Four LLM variants with excellent performance on natural language processing are evaluated.
arXiv Detail & Related papers (2024-07-25T03:01:47Z) - APTNESS: Incorporating Appraisal Theory and Emotion Support Strategies for Empathetic Response Generation [71.26755736617478]
Empathetic response generation is designed to comprehend the emotions of others.
We develop a framework that combines retrieval augmentation and emotional support strategy integration.
Our framework can enhance the empathy ability of LLMs from both cognitive and affective empathy perspectives.
arXiv Detail & Related papers (2024-07-23T02:23:37Z) - Utilizing Speech Emotion Recognition and Recommender Systems for
Negative Emotion Handling in Therapy Chatbots [0.0]
This paper proposes an approach to enhance therapy chatbots with auditory perception, enabling them to understand users' feelings and provide human-like empathy.
The proposed method incorporates speech emotion recognition (SER) techniques using CNN models and the ShEMO dataset.
To provide a more immersive and empathetic user experience, a text-to-speech model called GlowTTS is integrated.
arXiv Detail & Related papers (2023-11-18T16:35:55Z) - Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models [2.679689033125693]
We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce Large Language Models (LLMs) to reason about human emotional states.
This method is inspired by various psychotherapy approaches including Cognitive Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person Centered Therapy (PCT), and Reality Therapy (RT)
arXiv Detail & Related papers (2023-11-02T02:21:39Z) - Harnessing Large Language Models' Empathetic Response Generation
Capabilities for Online Mental Health Counselling Support [1.9336815376402723]
Large Language Models (LLMs) have demonstrated remarkable performance across various information-seeking and reasoning tasks.
This study sought to examine LLMs' capability to generate empathetic responses in conversations that emulate those in a mental health counselling setting.
We selected five LLMs: version 3.5 and version 4 of the Generative Pre-training (GPT), Vicuna FastChat-T5, Pathways Language Model (PaLM) version 2, and Falcon-7B-Instruct.
arXiv Detail & Related papers (2023-10-12T03:33:06Z) - Chat2Brain: A Method for Mapping Open-Ended Semantic Queries to Brain
Activation Maps [59.648646222905235]
We propose a method called Chat2Brain that combines LLMs to basic text-2-image model, known as Text2Brain, to map semantic queries to brain activation maps.
We demonstrate that Chat2Brain can synthesize plausible neural activation patterns for more complex tasks of text queries.
arXiv Detail & Related papers (2023-09-10T13:06:45Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
We introduce an innovative methodology that synthesizes human insights with the computational prowess of Large Language Models (LLMs)
By utilizing the in-context learning potential of ChatGPT, we generate an ExTensible Emotional Support dialogue dataset, named ExTES.
Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions.
arXiv Detail & Related papers (2023-08-17T10:49:18Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
We propose a hierarchical framework, based on chain regression models, for affective recognition from vocal bursts.
To address the challenge of data sparsity, we also use self-supervised learning (SSL) representations with layer-wise and temporal aggregation modules.
The proposed systems participated in the ACII Affective Vocal Burst (A-VB) Challenge 2022 and ranked first in the "TWO'' and "CULTURE" tasks.
arXiv Detail & Related papers (2023-03-14T16:08:45Z) - MAFW: A Large-scale, Multi-modal, Compound Affective Database for
Dynamic Facial Expression Recognition in the Wild [56.61912265155151]
We propose MAFW, a large-scale compound affective database with 10,045 video-audio clips in the wild.
Each clip is annotated with a compound emotional category and a couple of sentences that describe the subjects' affective behaviors in the clip.
For the compound emotion annotation, each clip is categorized into one or more of the 11 widely-used emotions, i.e., anger, disgust, fear, happiness, neutral, sadness, surprise, contempt, anxiety, helplessness, and disappointment.
arXiv Detail & Related papers (2022-08-01T13:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.