VisionGraph: Leveraging Large Multimodal Models for Graph Theory Problems in Visual Context
- URL: http://arxiv.org/abs/2405.04950v1
- Date: Wed, 8 May 2024 10:42:48 GMT
- Title: VisionGraph: Leveraging Large Multimodal Models for Graph Theory Problems in Visual Context
- Authors: Yunxin Li, Baotian Hu, Haoyuan Shi, Wei Wang, Longyue Wang, Min Zhang,
- Abstract summary: We design a benchmark named VisionGraph, used to explore the capabilities of advanced LMMs in solving multimodal graph theory problems.
We present a Description-Program-Reasoning (DPR) chain to enhance the logical accuracy of reasoning processes.
Our study shows that GPT-4V outperforms Gemini Pro in multi-step graph reasoning.
- Score: 41.11701706312843
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Multimodal Models (LMMs) have achieved impressive success in visual understanding and reasoning, remarkably improving the performance of mathematical reasoning in a visual context. Yet, a challenging type of visual math lies in the multimodal graph theory problem, which demands that LMMs understand the graphical structures accurately and perform multi-step reasoning on the visual graph. Additionally, exploring multimodal graph theory problems will lead to more effective strategies in fields like biology, transportation, and robotics planning. To step forward in this direction, we are the first to design a benchmark named VisionGraph, used to explore the capabilities of advanced LMMs in solving multimodal graph theory problems. It encompasses eight complex graph problem tasks, from connectivity to shortest path problems. Subsequently, we present a Description-Program-Reasoning (DPR) chain to enhance the logical accuracy of reasoning processes through graphical structure description generation and algorithm-aware multi-step reasoning. Our extensive study shows that 1) GPT-4V outperforms Gemini Pro in multi-step graph reasoning; 2) All LMMs exhibit inferior perception accuracy for graphical structures, whether in zero/few-shot settings or with supervised fine-tuning (SFT), which further affects problem-solving performance; 3) DPR significantly improves the multi-step graph reasoning capabilities of LMMs and the GPT-4V (DPR) agent achieves SOTA performance.
Related papers
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
We introduce Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture to capture node-centric local information and interaction-centric global structure.
The proposed scheme allows LLMs to address various graph queries with high efficacy, efficiency, and robustness, while reducing computational costs on large-scale graph tasks.
Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link, and graph-levels highlight the superiority of our method.
arXiv Detail & Related papers (2024-10-29T00:28:02Z) - InstructG2I: Synthesizing Images from Multimodal Attributed Graphs [50.852150521561676]
We propose a graph context-conditioned diffusion model called InstructG2I.
InstructG2I first exploits the graph structure and multimodal information to conduct informative neighbor sampling.
A Graph-QFormer encoder adaptively encodes the graph nodes into an auxiliary set of graph prompts to guide the denoising process.
arXiv Detail & Related papers (2024-10-09T17:56:15Z) - Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents [27.4884498301785]
We introduce GraphAgent-Reasoner, a fine-tuning-free framework for explicit and precise graph reasoning.
Inspired by distributed graph computation theory, our framework decomposes graph problems into smaller, node-centric tasks that are distributed among multiple agents.
Our framework demonstrates the capability to handle real-world graph reasoning applications such as webpage importance analysis.
arXiv Detail & Related papers (2024-10-07T15:34:14Z) - GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding [17.724492441325165]
Large Language Models (LLMs) struggle with comprehending graphical structure information through prompts of graph description sequences.
We propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information.
arXiv Detail & Related papers (2024-09-05T05:34:16Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
We focus on the graph reasoning ability of Large Language Models (LLMs)
We revisit the ability of LLMs on three fundamental graph tasks: graph description translation, graph connectivity, and the shortest-path problem.
Our findings suggest that LLMs can fail to understand graph structures through text descriptions and exhibit varying performance for all these fundamental tasks.
arXiv Detail & Related papers (2024-08-18T16:26:39Z) - Can Graph Descriptive Order Affect Solving Graph Problems with LLMs? [38.1577036285387]
Large language models (LLMs) have achieved significant success in reasoning tasks, including mathematical reasoning and logical deduction.
Previous studies have explored LLMs' graph reasoning abilities through various techniques.
A critical factor has been mostly overlooked: the prompt sequential order in which graph descriptions are presented to the models.
arXiv Detail & Related papers (2024-02-11T09:46:24Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - GraphLLM: Boosting Graph Reasoning Ability of Large Language Model [7.218768686958888]
GraphLLM is a pioneering end-to-end approach that integrates graph learning models with Large Language Models.
Our empirical evaluations across four fundamental graph reasoning tasks validate the effectiveness of GraphLLM.
The results exhibit a substantial average accuracy enhancement of 54.44%, alongside a noteworthy context reduction of 96.45%.
arXiv Detail & Related papers (2023-10-09T16:42:00Z) - Talk like a Graph: Encoding Graphs for Large Language Models [15.652881653332194]
We study the first comprehensive study of encoding graph-structured data as text for consumption by large language models (LLMs)
We show that LLM performance on graph reasoning tasks varies on three fundamental levels: (1) the graph encoding method, (2) the nature of the graph task itself, and (3) interestingly, the very structure of the graph considered.
arXiv Detail & Related papers (2023-10-06T19:55:21Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures.
We propose NLGraph, a benchmark of graph-based problem solving simulating in natural language.
arXiv Detail & Related papers (2023-05-17T08:29:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.