A Hierarchical Language Model For Interpretable Graph Reasoning
- URL: http://arxiv.org/abs/2410.22372v1
- Date: Tue, 29 Oct 2024 00:28:02 GMT
- Title: A Hierarchical Language Model For Interpretable Graph Reasoning
- Authors: Sambhav Khurana, Xiner Li, Shurui Gui, Shuiwang Ji,
- Abstract summary: We introduce Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture to capture node-centric local information and interaction-centric global structure.
The proposed scheme allows LLMs to address various graph queries with high efficacy, efficiency, and robustness, while reducing computational costs on large-scale graph tasks.
Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link, and graph-levels highlight the superiority of our method.
- Score: 47.460255447561906
- License:
- Abstract: Large language models (LLMs) are being increasingly explored for graph tasks. Despite their remarkable success in text-based tasks, LLMs' capabilities in understanding explicit graph structures remain limited, particularly with large graphs. In this work, we introduce Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture to capture node-centric local information and interaction-centric global structure, effectively enhancing graph structure understanding abilities. The proposed scheme allows LLMs to address various graph queries with high efficacy, efficiency, and robustness, while reducing computational costs on large-scale graph tasks. Furthermore, we demonstrate the interpretability of our model using intrinsic attention weights and established explainers. Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link, and graph-levels highlight the superiority of our method, marking a significant advancement in the application of LLMs to graph understanding.
Related papers
- NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
Graphs are a fundamental data structure for representing relationships in real-world scenarios.
Applying Large Language Models (LLMs) to graph-related tasks poses significant challenges.
We introduce Node Tokenizer for Large Language Models (NT-LLM), a novel framework that efficiently encodes graph structures.
arXiv Detail & Related papers (2024-10-14T17:21:57Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding [17.724492441325165]
Large Language Models (LLMs) struggle with comprehending graphical structure information through prompts of graph description sequences.
We propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information.
arXiv Detail & Related papers (2024-09-05T05:34:16Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
We focus on the graph reasoning ability of Large Language Models (LLMs)
We revisit the ability of LLMs on three fundamental graph tasks: graph description translation, graph connectivity, and the shortest-path problem.
Our findings suggest that LLMs can fail to understand graph structures through text descriptions and exhibit varying performance for all these fundamental tasks.
arXiv Detail & Related papers (2024-08-18T16:26:39Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
Graph Neural Networks (GNNs) need to be re-trained every time when applied to different graph tasks and datasets.
We propose a novel framework MuseGraph, which seamlessly integrates the strengths of GNNs and Large Language Models (LLMs)
Our experimental results demonstrate significant improvements in different graph tasks.
arXiv Detail & Related papers (2024-03-02T09:27:32Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - GraphLLM: Boosting Graph Reasoning Ability of Large Language Model [7.218768686958888]
GraphLLM is a pioneering end-to-end approach that integrates graph learning models with Large Language Models.
Our empirical evaluations across four fundamental graph reasoning tasks validate the effectiveness of GraphLLM.
The results exhibit a substantial average accuracy enhancement of 54.44%, alongside a noteworthy context reduction of 96.45%.
arXiv Detail & Related papers (2023-10-09T16:42:00Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
Large language models like ChatGPT have become indispensable to artificial general intelligence.
In this study, we conduct an investigation to assess the proficiency of LLMs in comprehending graph data.
Our findings contribute valuable insights towards bridging the gap between language models and graph understanding.
arXiv Detail & Related papers (2023-05-24T11:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.