論文の概要: Communication-Efficient Collaborative Perception via Information Filling with Codebook
- arxiv url: http://arxiv.org/abs/2405.04966v1
- Date: Wed, 8 May 2024 11:12:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 14:44:45.415444
- Title: Communication-Efficient Collaborative Perception via Information Filling with Codebook
- Title(参考訳): コードブックによる情報充足によるコミュニケーション効率の良い協調認識
- Authors: Yue Hu, Juntong Peng, Sifei Liu, Junhao Ge, Si Liu, Siheng Chen,
- Abstract要約: 協調的知覚は、他のエージェントと知覚的メッセージの交換を通じて、各エージェントに知覚能力を向上させる権限を与える。
このボトルネック問題に対処するため、私たちの中核となる考え方は、協調メッセージを2つの重要な側面、すなわち表現と選択から最適化することにあります。
これら2つの設計を統合することで,新しいコミュニケーション効率の協調認識システムであるCodeFillingを提案する。
- 参考スコア(独自算出の注目度): 48.087934650038044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative perception empowers each agent to improve its perceptual ability through the exchange of perceptual messages with other agents. It inherently results in a fundamental trade-off between perception ability and communication cost. To address this bottleneck issue, our core idea is to optimize the collaborative messages from two key aspects: representation and selection. The proposed codebook-based message representation enables the transmission of integer codes, rather than high-dimensional feature maps. The proposed information-filling-driven message selection optimizes local messages to collectively fill each agent's information demand, preventing information overflow among multiple agents. By integrating these two designs, we propose CodeFilling, a novel communication-efficient collaborative perception system, which significantly advances the perception-communication trade-off and is inclusive to both homogeneous and heterogeneous collaboration settings. We evaluate CodeFilling in both a real-world dataset, DAIR-V2X, and a new simulation dataset, OPV2VH+. Results show that CodeFilling outperforms previous SOTA Where2comm on DAIR-V2X/OPV2VH+ with 1,333/1,206 times lower communication volume. Our code is available at https://github.com/PhyllisH/CodeFilling.
- Abstract(参考訳): 協調的知覚は、他のエージェントと知覚的メッセージの交換を通じて、各エージェントに知覚能力を向上させる権限を与える。
これは本質的には、知覚能力と通信コストの根本的なトレードオフをもたらす。
このボトルネック問題に対処するため、私たちの中核となる考え方は、協調メッセージを2つの重要な側面、すなわち表現と選択から最適化することにあります。
提案したコードブックベースのメッセージ表現は,高次元特徴写像ではなく整数符号の伝送を可能にする。
提案した情報充足型メッセージ選択は、各エージェントの情報要求をまとめて満たし、複数のエージェント間の情報のオーバーフローを防止するために、ローカルメッセージを最適化する。
これら2つの設計を統合することで,コミュニケーション効率の良い協調認識システムであるCodeFillingを提案する。
実世界のデータセットDAIR-V2Xと新しいシミュレーションデータセットOPV2VH+でCodeFillingを評価する。
その結果, CodeFilling は, DAIR-V2X/OPV2VH+ 上の SOTA Where2comm よりも1,333/1,206 倍低い通信量で優れていた。
私たちのコードはhttps://github.com/PhyllisH/CodeFilling.comから入手可能です。
関連論文リスト
- Communication-Efficient Federated Knowledge Graph Embedding with Entity-Wise Top-K Sparsification [49.66272783945571]
Federated Knowledge Graphs Embedding Learning (FKGE)は、パラメータのかなりのサイズと広範なコミュニケーションラウンドから生じるコミュニケーション効率の課題に直面する。
本稿では,Entity-Wise Top-K Sparsification 戦略に基づく双方向通信効率のFedSを提案する。
論文 参考訳(メタデータ) (2024-06-19T05:26:02Z) - V2X-PC: Vehicle-to-everything Collaborative Perception via Point Cluster [58.79477191603844]
我々は,低レベル構造情報と高レベル意味情報を組み合わせて,シーンを疎結合に表現する新しいメッセージユニット,すなわちポイントクラスタを導入する。
このフレームワークには、オブジェクトの機能を維持し、帯域幅を管理するためのポイントクラスタパッキング(PCP)モジュールが含まれている。
2つの広く認識されている協調認識ベンチマークの実験は、従来の最先端の手法と比較して、我々の手法の優れた性能を示している。
論文 参考訳(メタデータ) (2024-03-25T11:24:02Z) - What Makes Good Collaborative Views? Contrastive Mutual Information Maximization for Multi-Agent Perception [52.41695608928129]
マルチエージェント認識(MAP)は、複数のソースからのデータを解釈することで、自律システムが複雑な環境を理解することを可能にする。
本稿では,MAPにおける協調的視点の「良い」特性を探求することに焦点を当てた中間的協調について検討する。
中間コラボレーションのための新しいフレームワークCMiMCを提案する。
論文 参考訳(メタデータ) (2024-03-15T07:18:55Z) - Pragmatic Communication in Multi-Agent Collaborative Perception [80.14322755297788]
協調的な知覚は、知覚能力とコミュニケーションコストのトレードオフをもたらす。
PragCommは2つの重要なコンポーネントを持つマルチエージェント協調認識システムである。
PragCommは、32.7K以上の通信量で従来手法より一貫して優れていた。
論文 参考訳(メタデータ) (2024-01-23T11:58:08Z) - Context-aware Communication for Multi-agent Reinforcement Learning [6.109127175562235]
マルチエージェント強化学習(MARL)のための文脈認識型コミュニケーション手法を開発した。
第1段階では、エージェントは放送方式で粗い表現を交換し、第2段階のコンテキストを提供する。
その後、エージェントは第2段階の注意機構を利用し、受信機用にパーソナライズされたメッセージを選択的に生成する。
CACOMの有効性を評価するため,アクタ批判型と値に基づくMARLアルゴリズムを併用する。
論文 参考訳(メタデータ) (2023-12-25T03:33:08Z) - Select2Col: Leveraging Spatial-Temporal Importance of Semantic
Information for Efficient Collaborative Perception [21.043094544649733]
共有意味情報の活用による協調的認識は、孤立したエージェントの個々人の限界を克服する上で重要な役割を担っている。
既存の協調認識手法は、時間次元の重要性を無視しながら、意味情報の空間的特徴にのみ焦点をあてる傾向がある。
Select2Colは,セマンティアンダーラインの情報アンダーラインを考慮した新しい協調認識フレームワークである。
論文 参考訳(メタデータ) (2023-07-31T09:33:19Z) - Where2comm: Communication-Efficient Collaborative Perception via Spatial
Confidence Maps [24.47241495415147]
マルチエージェント協調知覚は、知覚性能を大幅に向上させる可能性がある。
これは必然的に、知覚性能と通信帯域間の根本的なトレードオフをもたらす。
本稿では,知覚情報の空間的不均一性を反映した空間信頼マップを提案する。
コミュニケーション効率の良い協調認識フレームワークであるWhere2commを提案する。
論文 参考訳(メタデータ) (2022-09-26T16:41:18Z) - Multi-agent Communication with Graph Information Bottleneck under
Limited Bandwidth (a position paper) [92.11330289225981]
多くの実世界のシナリオでは、通信は高価であり、マルチエージェントシステムの帯域幅には一定の制約がある。
通信資源を占有する冗長なメッセージは、情報的メッセージの送信をブロックし、パフォーマンスを損なう。
本稿では,通信グラフ内の構造情報とノード情報を効果的に圧縮し,帯域幅に制約のある設定に対処する,新しいマルチエージェント通信モジュールCommGIBを提案する。
論文 参考訳(メタデータ) (2021-12-20T07:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。