Robust deep learning from weakly dependent data
- URL: http://arxiv.org/abs/2405.05081v1
- Date: Wed, 8 May 2024 14:25:40 GMT
- Title: Robust deep learning from weakly dependent data
- Authors: William Kengne, Modou Wade,
- Abstract summary: This paper considers robust deep learning from weakly dependent observations, with unbounded loss function and unbounded input/output.
We derive a relationship between these bounds and $r$, and when the data have moments of any order (that is $r=infty$), the convergence rate is close to some well-known results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent developments on deep learning established some theoretical properties of deep neural networks estimators. However, most of the existing works on this topic are restricted to bounded loss functions or (sub)-Gaussian or bounded input. This paper considers robust deep learning from weakly dependent observations, with unbounded loss function and unbounded input/output. It is only assumed that the output variable has a finite $r$ order moment, with $r >1$. Non asymptotic bounds for the expected excess risk of the deep neural network estimator are established under strong mixing, and $\psi$-weak dependence assumptions on the observations. We derive a relationship between these bounds and $r$, and when the data have moments of any order (that is $r=\infty$), the convergence rate is close to some well-known results. When the target predictor belongs to the class of H\"older smooth functions with sufficiently large smoothness index, the rate of the expected excess risk for exponentially strongly mixing data is close to or as same as those for obtained with i.i.d. samples. Application to robust nonparametric regression and robust nonparametric autoregression are considered. The simulation study for models with heavy-tailed errors shows that, robust estimators with absolute loss and Huber loss function outperform the least squares method.
Related papers
- Deep learning from strongly mixing observations: Sparse-penalized regularization and minimax optimality [0.0]
We consider sparse-penalized regularization for deep neural network predictor.
We deal with the squared and a broad class of loss functions.
arXiv Detail & Related papers (2024-06-12T15:21:51Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Neural Network Approximation for Pessimistic Offline Reinforcement
Learning [17.756108291816908]
We present a non-asymptotic estimation error of pessimistic offline RL using general neural network approximation.
Our result shows that the estimation error consists of two parts: the first converges to zero at a desired rate on the sample size with partially controllable concentrability, and the second becomes negligible if the residual constraint is tight.
arXiv Detail & Related papers (2023-12-19T05:17:27Z) - Penalized deep neural networks estimator with general loss functions
under weak dependence [0.0]
This paper carries out sparse-penalized deep neural networks predictors for learning weakly dependent processes.
Some simulation results are provided, and application to the forecast of the particulate matter in the Vit'oria metropolitan area is also considered.
arXiv Detail & Related papers (2023-05-10T15:06:53Z) - Sparse-penalized deep neural networks estimator under weak dependence [0.0]
We consider the nonparametric regression and the classification problems for $psi$-weakly dependent processes.
A penalized estimation method for sparse deep neural networks is performed.
arXiv Detail & Related papers (2023-03-02T16:53:51Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
quantile regression tends to emphunder-cover than the desired coverage level in reality.
We prove that quantile regression suffers from an inherent under-coverage bias.
Our theory reveals that this under-coverage bias stems from a certain high-dimensional parameter estimation error.
arXiv Detail & Related papers (2021-06-10T06:11:55Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.