Adversarial learning for nonparametric regression: Minimax rate and adaptive estimation
- URL: http://arxiv.org/abs/2506.01267v1
- Date: Mon, 02 Jun 2025 02:38:47 GMT
- Title: Adversarial learning for nonparametric regression: Minimax rate and adaptive estimation
- Authors: Jingfu Peng, Yuhong Yang,
- Abstract summary: We establish the minimax rate of convergence under adversarial $L_risks with $1 leq leq infty$ and propose a piecewise local estimator that achieves the minimax optimality.<n>We construct a data-driven adaptive estimator that is shown to achieve, within a logarithmic factor, the optimal rate across a broad scale of non and adversarial classes.
- Score: 3.244945627960733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite tremendous advancements of machine learning models and algorithms in various application domains, they are known to be vulnerable to subtle, natural or intentionally crafted perturbations in future input data, known as adversarial attacks. While numerous adversarial learning methods have been proposed, fundamental questions about their statistical optimality in robust loss remain largely unanswered. In particular, the minimax rate of convergence and the construction of rate-optimal estimators under future $X$-attacks are yet to be worked out. In this paper, we address this issue in the context of nonparametric regression, under suitable assumptions on the smoothness of the regression function and the geometric structure of the input perturbation set. We first establish the minimax rate of convergence under adversarial $L_q$-risks with $1 \leq q \leq \infty$ and propose a piecewise local polynomial estimator that achieves the minimax optimality. The established minimax rate elucidates how the smoothness level and perturbation magnitude affect the fundamental limit of adversarial learning under future $X$-attacks. Furthermore, we construct a data-driven adaptive estimator that is shown to achieve, within a logarithmic factor, the optimal rate across a broad scale of nonparametric and adversarial classes.
Related papers
- Minimax rates of convergence for nonparametric regression under adversarial attacks [3.244945627960733]
We theoretically analyse the limits of robustness against adversarial attacks in a nonparametric regression setting.<n>Our work reveals that the minimax rate under adversarial attacks in the input is the same as sum of two terms.
arXiv Detail & Related papers (2024-10-12T07:11:38Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.<n>We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Transfer Learning for Nonparametric Regression: Non-asymptotic Minimax
Analysis and Adaptive Procedure [5.303044915173525]
We develop a novel estimator called the confidence thresholding estimator, which is shown to achieve the minimax optimal risk up to a logarithmic factor.
We then propose a data-driven algorithm that adaptively achieves the minimax risk up to a logarithmic factor across a wide range of parameter spaces.
arXiv Detail & Related papers (2024-01-22T16:24:04Z) - Quantization for decentralized learning under subspace constraints [61.59416703323886]
We consider decentralized optimization problems where agents have individual cost functions to minimize subject to subspace constraints.
We propose and study an adaptive decentralized strategy where the agents employ differential randomized quantizers to compress their estimates.
The analysis shows that, under some general conditions on the quantization noise, the strategy is stable both in terms of mean-square error and average bit rate.
arXiv Detail & Related papers (2022-09-16T09:38:38Z) - Tractable and Near-Optimal Adversarial Algorithms for Robust Estimation
in Contaminated Gaussian Models [1.609950046042424]
Consider the problem of simultaneous estimation of location and variance matrix under Huber's contaminated Gaussian model.
First, we study minimum $f$-divergence estimation at the population level, corresponding to a generative adversarial method with a nonparametric discriminator.
We develop tractable adversarial algorithms with simple spline discriminators, which can be implemented via nested optimization.
The proposed methods are shown to achieve minimax optimal rates or near-optimal rates depending on the $f$-divergence and the penalty used.
arXiv Detail & Related papers (2021-12-24T02:46:51Z) - Gaining Outlier Resistance with Progressive Quantiles: Fast Algorithms
and Theoretical Studies [1.6457778420360534]
A framework of outlier-resistant estimation is introduced to robustify arbitrarily loss function.
A new technique is proposed to alleviate the requirement on starting point such that on regular datasets the number of data reestimations can be substantially reduced.
The obtained estimators, though not necessarily globally or even globally, enjoymax optimality in both low dimensions.
arXiv Detail & Related papers (2021-12-15T20:35:21Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - Minimax Off-Policy Evaluation for Multi-Armed Bandits [58.7013651350436]
We study the problem of off-policy evaluation in the multi-armed bandit model with bounded rewards.
We develop minimax rate-optimal procedures under three settings.
arXiv Detail & Related papers (2021-01-19T18:55:29Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z) - Interpolating Predictors in High-Dimensional Factor Regression [2.1055643409860743]
This work studies finite-sample properties of the risk of the minimum-norm interpolating predictor in high-dimensional regression models.
We show that the min-norm interpolating predictor can have similar risk to predictors based on principal components regression and ridge regression, and can improve over LASSO based predictors, in the high-dimensional regime.
arXiv Detail & Related papers (2020-02-06T22:08:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.