Air Gap: Protecting Privacy-Conscious Conversational Agents
- URL: http://arxiv.org/abs/2405.05175v1
- Date: Wed, 8 May 2024 16:12:45 GMT
- Title: Air Gap: Protecting Privacy-Conscious Conversational Agents
- Authors: Eugene Bagdasaryan, Ren Yi, Sahra Ghalebikesabi, Peter Kairouz, Marco Gruteser, Sewoong Oh, Borja Balle, Daniel Ramage,
- Abstract summary: We introduce a novel threat model where adversarial third-party apps manipulate the context of interaction to trick LLM-based agents into revealing private information not relevant to the task at hand.
We introduce AirGapAgent, a privacy-conscious agent designed to prevent unintended data leakage by restricting the agent's access to only the data necessary for a specific task.
- Score: 44.04662124191715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing use of large language model (LLM)-based conversational agents to manage sensitive user data raises significant privacy concerns. While these agents excel at understanding and acting on context, this capability can be exploited by malicious actors. We introduce a novel threat model where adversarial third-party apps manipulate the context of interaction to trick LLM-based agents into revealing private information not relevant to the task at hand. Grounded in the framework of contextual integrity, we introduce AirGapAgent, a privacy-conscious agent designed to prevent unintended data leakage by restricting the agent's access to only the data necessary for a specific task. Extensive experiments using Gemini, GPT, and Mistral models as agents validate our approach's effectiveness in mitigating this form of context hijacking while maintaining core agent functionality. For example, we show that a single-query context hijacking attack on a Gemini Ultra agent reduces its ability to protect user data from 94% to 45%, while an AirGapAgent achieves 97% protection, rendering the same attack ineffective.
Related papers
- Can Humans Oversee Agents to Prevent Privacy Leakage? A Study on Privacy Awareness, Preferences, and Trust in Language Model Agents [1.5020330976600738]
Language model (LM) agents that act on users' behalf for personal tasks can boost productivity, but are also susceptible to unintended privacy leakage risks.
We present the first study on people's capacity to oversee the privacy implications of the LM agents.
arXiv Detail & Related papers (2024-11-02T19:15:42Z) - Imprompter: Tricking LLM Agents into Improper Tool Use [35.255462653237885]
Large Language Model (LLM) Agents are an emerging computing paradigm that blends generative machine learning with tools such as code interpreters, web browsing, email, and more generally, external resources.
We contribute to the security foundations of agent-based systems and surface a new class of automatically computed obfuscated adversarial prompt attacks.
arXiv Detail & Related papers (2024-10-19T01:00:57Z) - Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification [35.16099878559559]
Large language models (LLMs) have experienced significant development and are being deployed in real-world applications.
We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions.
Our experiments reveal that these attacks can induce failure rates exceeding 80% in multiple scenarios.
arXiv Detail & Related papers (2024-07-30T14:35:31Z) - AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases [73.04652687616286]
We propose AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base.
Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning.
On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance.
arXiv Detail & Related papers (2024-07-17T17:59:47Z) - AgentDojo: A Dynamic Environment to Evaluate Attacks and Defenses for LLM Agents [27.701301913159067]
We introduce AgentDojo, an evaluation framework for agents that execute tools over untrusted data.
AgentDojo is not a static test suite, but rather an environment for designing and evaluating new agent tasks, defenses, and adaptive attacks.
We populate AgentDojo with 97 realistic tasks, 629 security test cases, and various attack and defense paradigms from the literature.
arXiv Detail & Related papers (2024-06-19T08:55:56Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
Existing methods for enhancing the safety of large language models (LLMs) are not directly transferable to LLM-powered agents.
We propose GuardAgent, the first LLM agent as a guardrail to other LLM agents.
GuardAgent comprises two steps: 1) creating a task plan by analyzing the provided guard requests, and 2) generating guardrail code based on the task plan and executing the code by calling APIs or using external engines.
arXiv Detail & Related papers (2024-06-13T14:49:26Z) - InjecAgent: Benchmarking Indirect Prompt Injections in Tool-Integrated Large Language Model Agents [3.5248694676821484]
We introduce InjecAgent, a benchmark designed to assess the vulnerability of tool-integrated LLM agents to IPI attacks.
InjecAgent comprises 1,054 test cases covering 17 different user tools and 62 attacker tools.
We show that agents are vulnerable to IPI attacks, with ReAct-prompted GPT-4 vulnerable to attacks 24% of the time.
arXiv Detail & Related papers (2024-03-05T06:21:45Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - Malicious Agent Detection for Robust Multi-Agent Collaborative Perception [52.261231738242266]
Multi-agent collaborative (MAC) perception is more vulnerable to adversarial attacks than single-agent perception.
We propose Malicious Agent Detection (MADE), a reactive defense specific to MAC perception.
We conduct comprehensive evaluations on a benchmark 3D dataset V2X-sim and a real-road dataset DAIR-V2X.
arXiv Detail & Related papers (2023-10-18T11:36:42Z) - Certifiably Robust Policy Learning against Adversarial Communication in
Multi-agent Systems [51.6210785955659]
Communication is important in many multi-agent reinforcement learning (MARL) problems for agents to share information and make good decisions.
However, when deploying trained communicative agents in a real-world application where noise and potential attackers exist, the safety of communication-based policies becomes a severe issue that is underexplored.
In this work, we consider an environment with $N$ agents, where the attacker may arbitrarily change the communication from any $CfracN-12$ agents to a victim agent.
arXiv Detail & Related papers (2022-06-21T07:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.