Machine Learning Assisted Dynamical Classification of Trans-Neptunian Objects
- URL: http://arxiv.org/abs/2405.05185v1
- Date: Wed, 8 May 2024 16:20:47 GMT
- Title: Machine Learning Assisted Dynamical Classification of Trans-Neptunian Objects
- Authors: Kathryn Volk, Renu Malhotra,
- Abstract summary: Trans-Neptunian objects (TNOs) are small, icy bodies in the outer solar system.
classification has traditionally been done by human inspection of plots of the time evolution of orbital parameters.
We present an improved supervised machine learning classifier for TNOs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trans-Neptunian objects (TNOs) are small, icy bodies in the outer solar system. They are observed to have a complex orbital distribution that was shaped by the early dynamical history and migration of the giant planets. Comparisons between the different dynamical classes of modeled and observed TNOs can help constrain the history of the outer solar system. Because of the complex dynamics of TNOs, particularly those in and near mean motion resonances with Neptune, classification has traditionally been done by human inspection of plots of the time evolution of orbital parameters. This is very inefficient. The Vera Rubin Observatory's Legacy Survey of Space and Time (LSST) is expected to increase the number of known TNOs by a factor of $\sim$10, necessitating a much more automated process. In this chapter we present an improved supervised machine learning classifier for TNOs. Using a large and diverse training set as well as carefully chosen, dynamically motivated data features calculated from numerical integrations of TNO orbits, our classifier returns results that match those of a human classifier 98% of the time, and dynamically relevant classifications 99.7% of the time. This classifier is dramatically more efficient than human classification, and it will improve classification of both observed and modeled TNO data.
Related papers
- Bias in Motion: Theoretical Insights into the Dynamics of Bias in SGD Training [7.5041863920639456]
Machine learning systems often acquire biases by leveraging undesired features in the data, impacting accuracy across different sub-populations.
This paper explores the evolution of bias in a teacher-student setup modeling different data sub-populations with a Gaussian-mixture model.
Applying our findings to fairness and robustness, we delineate how and when heterogeneous data and spurious features can generate and amplify bias.
arXiv Detail & Related papers (2024-05-28T15:50:10Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Learning to Jump: Thinning and Thickening Latent Counts for Generative
Modeling [69.60713300418467]
Learning to jump is a general recipe for generative modeling of various types of data.
We demonstrate when learning to jump is expected to perform comparably to learning to denoise, and when it is expected to perform better.
arXiv Detail & Related papers (2023-05-28T05:38:28Z) - Optimization of Artificial Neural Networks models applied to the
identification of images of asteroids' resonant arguments [0.6449761153631166]
Recent works used Convolutional Neural Networks (CNN) models to perform such task automatically.
We compare the outcome of such models with those of some of the most advanced and publicly available CNN architectures, like the VGG, Inception and ResNet.
The VGG model, with and without regularizations, proved to be the most efficient method to predict labels of large datasets.
arXiv Detail & Related papers (2022-07-28T15:46:39Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Evolutionary Echo State Network: evolving reservoirs in the Fourier
space [1.7658686315825685]
The Echo State Network (ESN) is a class of Recurrent Neural Network with a large number of hidden-hidden weights (in the so-called reservoir)
We propose a new computational model of the ESN type, that represents the reservoir weights in the Fourier space and performs a fine-tuning of these weights applying genetic algorithms in the frequency domain.
arXiv Detail & Related papers (2022-06-10T08:59:40Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - JKOnet: Proximal Optimal Transport Modeling of Population Dynamics [69.89192135800143]
We propose a neural architecture that combines an energy model on measures, with (small) optimal displacements solved with input convex neural networks (ICNN)
We demonstrate the applicability of our model to explain and predict population dynamics.
arXiv Detail & Related papers (2021-06-11T12:30:43Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z) - Machine Learning for Searching the Dark Energy Survey for
Trans-Neptunian Objects [0.0]
We investigate how implementing machine learning could improve the efficiency of the search for Trans-Neptunian Objects (TNOs) within Dark Energy Survey (DES) data.
arXiv Detail & Related papers (2020-09-27T14:36:37Z) - Machine Learning Classification of Kuiper Belt Populations [0.0]
In the outer solar system, the Kuiper Belt contains dynamical sub-populations sculpted by a combination of planet formation and migration and gravitational perturbations from the present-day giant planet configuration.
Here we demonstrate that machine learning algorithms are a promising tool for reducing both the computational time and human effort required for this classification.
arXiv Detail & Related papers (2020-07-07T18:19:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.