A score-based particle method for homogeneous Landau equation
- URL: http://arxiv.org/abs/2405.05187v1
- Date: Wed, 8 May 2024 16:22:47 GMT
- Title: A score-based particle method for homogeneous Landau equation
- Authors: Yan Huang, Li Wang,
- Abstract summary: We propose a novel score-based particle method for solving the Landau equation in plasmas.
Our primary innovation lies in recognizing that this nonlinearity is in the form of the score function.
We provide a theoretical estimate by demonstrating that the KL divergence between our approximation and the true solution can be effectively controlled by the score-matching loss.
- Score: 7.600098227248821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel score-based particle method for solving the Landau equation in plasmas, that seamlessly integrates learning with structure-preserving particle methods [arXiv:1910.03080]. Building upon the Lagrangian viewpoint of the Landau equation, a central challenge stems from the nonlinear dependence of the velocity field on the density. Our primary innovation lies in recognizing that this nonlinearity is in the form of the score function, which can be approximated dynamically via techniques from score-matching. The resulting method inherits the conservation properties of the deterministic particle method while sidestepping the necessity for kernel density estimation in [arXiv:1910.03080]. This streamlines computation and enhances scalability with dimensionality. Furthermore, we provide a theoretical estimate by demonstrating that the KL divergence between our approximation and the true solution can be effectively controlled by the score-matching loss. Additionally, by adopting the flow map viewpoint, we derive an update formula for exact density computation. Extensive examples have been provided to show the efficiency of the method, including a physically relevant case of Coulomb interaction.
Related papers
- JKO for Landau: a variational particle method for homogeneous Landau equation [7.600098227248821]
We develop a novel implicit particle method for the Landau equation in the framework of the JKO scheme.
We first reformulate the Landau metric in a computationally friendly form, and then translate it into the Lagrangian viewpoint using the flow map.
A key observation is that, while the flow map evolves according to a rather complicated integral equation, the unknown component is merely a score function of the corresponding density.
arXiv Detail & Related papers (2024-09-18T20:08:19Z) - Efficient Trajectory Inference in Wasserstein Space Using Consecutive Averaging [3.8623569699070353]
Trajectory inference deals with the challenge of reconstructing continuous processes from such observations.
We propose methods for B-spline approximation of point clouds through consecutive averaging that is instrinsic to the Wasserstein space.
We rigorously evaluate our method by providing convergence guarantees and testing it on simulated cell data.
arXiv Detail & Related papers (2024-05-30T04:19:20Z) - Transport based particle methods for the Fokker-Planck-Landau equation [1.7731793321727365]
We propose a particle method for numerically solving the Landau equation, inspired by the score-based transport modeling (SBTM) method for the Fokker-Planck equation.
This method can preserve some important physical properties of the Landau equation, such as the conservation of mass, momentum, and energy, and decay of estimated entropy.
arXiv Detail & Related papers (2024-05-16T18:37:35Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - Probability flow solution of the Fokker-Planck equation [10.484851004093919]
We introduce an alternative scheme based on integrating an ordinary differential equation that describes the flow of probability.
Unlike the dynamics, this equation deterministically pushes samples from the initial density onto samples from the solution at any later time.
Our approach is based on recent advances in score-based diffusion for generative modeling.
arXiv Detail & Related papers (2022-06-09T17:37:09Z) - Self-Consistency of the Fokker-Planck Equation [117.17004717792344]
The Fokker-Planck equation governs the density evolution of the Ito process.
Ground-truth velocity field can be shown to be the solution of a fixed-point equation.
In this paper, we exploit this concept to design a potential function of the hypothesis velocity fields.
arXiv Detail & Related papers (2022-06-02T03:44:23Z) - A blob method method for inhomogeneous diffusion with applications to
multi-agent control and sampling [0.6562256987706128]
We develop a deterministic particle method for the weighted porous medium equation (WPME) and prove its convergence on bounded time intervals.
Our method has natural applications to multi-agent coverage algorithms and sampling probability measures.
arXiv Detail & Related papers (2022-02-25T19:49:05Z) - Large-Scale Wasserstein Gradient Flows [84.73670288608025]
We introduce a scalable scheme to approximate Wasserstein gradient flows.
Our approach relies on input neural networks (ICNNs) to discretize the JKO steps.
As a result, we can sample from the measure at each step of the gradient diffusion and compute its density.
arXiv Detail & Related papers (2021-06-01T19:21:48Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.