Tiny Deep Ensemble: Uncertainty Estimation in Edge AI Accelerators via Ensembling Normalization Layers with Shared Weights
- URL: http://arxiv.org/abs/2405.05286v1
- Date: Tue, 7 May 2024 22:54:17 GMT
- Title: Tiny Deep Ensemble: Uncertainty Estimation in Edge AI Accelerators via Ensembling Normalization Layers with Shared Weights
- Authors: Soyed Tuhin Ahmed, Michael Hefenbrock, Mehdi B. Tahoori,
- Abstract summary: In AI-driven systems, uncertainty estimation allows the user to avoid overconfidence predictions and achieve functional safety.
We propose the Tiny-Deep Ensemble approach, a low-cost approach for uncertainty estimation on edge devices.
Our method does not compromise accuracy, with an increase in inference accuracy of up to $sim 1%$ and a reduction in RMSE of $17.17%$ in various benchmark datasets.
- Score: 0.8233872344445676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The applications of artificial intelligence (AI) are rapidly evolving, and they are also commonly used in safety-critical domains, such as autonomous driving and medical diagnosis, where functional safety is paramount. In AI-driven systems, uncertainty estimation allows the user to avoid overconfidence predictions and achieve functional safety. Therefore, the robustness and reliability of model predictions can be improved. However, conventional uncertainty estimation methods, such as the deep ensemble method, impose high computation and, accordingly, hardware (latency and energy) overhead because they require the storage and processing of multiple models. Alternatively, Monte Carlo dropout (MC-dropout) methods, although having low memory overhead, necessitate numerous ($\sim 100$) forward passes, leading to high computational overhead and latency. Thus, these approaches are not suitable for battery-powered edge devices with limited computing and memory resources. In this paper, we propose the Tiny-Deep Ensemble approach, a low-cost approach for uncertainty estimation on edge devices. In our approach, only normalization layers are ensembled $M$ times, with all ensemble members sharing common weights and biases, leading to a significant decrease in storage requirements and latency. Moreover, our approach requires only one forward pass in a hardware architecture that allows batch processing for inference and uncertainty estimation. Furthermore, it has approximately the same memory overhead compared to a single model. Therefore, latency and memory overhead are reduced by a factor of up to $\sim M\times$. Nevertheless, our method does not compromise accuracy, with an increase in inference accuracy of up to $\sim 1\%$ and a reduction in RMSE of $17.17\%$ in various benchmark datasets, tasks, and state-of-the-art architectures.
Related papers
- Trustworthy Tree-based Machine Learning by $MoS_2$ Flash-based Analog CAM with Inherent Soft Boundaries [40.76908914832641]
Tree-based models excel in interpretability and accuracy, but scaling them remains computationally expensive.<n>Previous efforts to accelerate these models with analog content addressable memory (CAM) have struggled.<n>This work presents a novel hardware-software co-design approach using $MoS$ Flash-based analog CAM with inherent soft boundaries.
arXiv Detail & Related papers (2025-07-16T16:31:20Z) - Practical, optimal preparation of general quantum state with exponentially improved robustness [5.149586838873632]
In this work, we overcome existing methods with a bucket-brigade approach.
Our approach is the first to simultaneously achieve linear Clifford$+T$ circuit depth, gate count number, and space-time allocation.
These advancements offer the opportunity for processing big data in both near-term and fault-tolerant quantum devices.
arXiv Detail & Related papers (2024-11-05T03:48:00Z) - Few-Shot Testing: Estimating Uncertainty of Memristive Deep Neural Networks Using One Bayesian Test Vector [0.0]
We propose a test vector generation framework that can estimate the model uncertainty of NNs implemented on memristor-based CIM hardware.
Our method is evaluated on different model dimensions, tasks, fault rates, and variation noise to show that it can consistently achieve $100%$ coverage with only $0.024$ MB of memory overhead.
arXiv Detail & Related papers (2024-05-29T08:53:16Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation [53.17668583030862]
We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation.
We propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP)
We show that LOOP achieves a sublinear $tildemathcalO(mathrmpoly(d, mathrmsp(V*)) sqrtTbeta )$ regret, where $d$ and $beta$ correspond to AGEC and log-covering number of the hypothesis class respectively
arXiv Detail & Related papers (2024-04-19T06:24:22Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - $f$-Cal: Calibrated aleatoric uncertainty estimation from neural
networks for robot perception [9.425514903472545]
Existing approaches estimate uncertainty from neural network perception stacks by modifying network architectures, inference procedure, or loss functions.
Our key insight is that calibration is only achieved by imposing constraints across multiple examples, such as those in a mini-batch.
By enforcing the distribution of outputs of a neural network to resemble a target distribution by minimizing an $f$-divergence, we obtain significantly better-calibrated models compared to prior approaches.
arXiv Detail & Related papers (2021-09-28T17:57:58Z) - Adversarial Robustness Guarantees for Gaussian Processes [22.403365399119107]
Gaussian processes (GPs) enable principled computation of model uncertainty, making them attractive for safety-critical applications.
We present a framework to analyse adversarial robustness of GPs, defined as invariance of the model's decision to bounded perturbations.
We develop a branch-and-bound scheme to refine the bounds and show, for any $epsilon > 0$, that our algorithm is guaranteed to converge to values $epsilon$-close to the actual values in finitely many iterations.
arXiv Detail & Related papers (2021-04-07T15:14:56Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.