Enhancing Holonic Architecture with Natural Language Processing for System of Systems
- URL: http://arxiv.org/abs/2405.05365v1
- Date: Wed, 8 May 2024 18:47:52 GMT
- Title: Enhancing Holonic Architecture with Natural Language Processing for System of Systems
- Authors: Muhammad Ashfaq, Ahmed R. Sadik, Tommi Mikkonen, Muhammad Waseem, Niko M akitalo,
- Abstract summary: This paper proposes an innovative approach to enhance holon communication within System of Systems (SoS)
Our approach leverages advancements in CGI, specifically Large Language Models (LLMs) to enable holons to understand and act on natural language instructions.
This fosters more intuitive human-holon interactions, improving social intelligence and ultimately leading to better coordination among diverse systems.
- Score: 3.521544134339964
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The complexity and dynamic nature of System of Systems (SoS) necessitate efficient communication mechanisms to ensure interoperability and collaborative functioning among constituent systems, termed holons. This paper proposes an innovative approach to enhance holon communication within SoS through the integration of Conversational Generative Intelligence (CGI) techniques. Our approach leverages advancements in CGI, specifically Large Language Models (LLMs), to enable holons to understand and act on natural language instructions. This fosters more intuitive human-holon interactions, improving social intelligence and ultimately leading to better coordination among diverse systems. This position paper outlines a conceptual framework for CGI-enhanced holon interaction, discusses the potential impact on SoS adaptability, usability and efficiency, and sets the stage for future exploration and prototype implementation.
Related papers
- Large Generative Model-assisted Talking-face Semantic Communication System [55.42631520122753]
This study introduces a Large Generative Model-assisted Talking-face Semantic Communication (LGM-TSC) system.
Generative Semantic Extractor (GSE) at the transmitter converts semantically sparse talking-face videos into texts with high information density.
Private Knowledge Base (KB) based on the Large Language Model (LLM) for semantic disambiguation and correction.
Generative Semantic Reconstructor (GSR) that utilizes BERT-VITS2 and SadTalker models to transform text back into a high-QoE talking-face video.
arXiv Detail & Related papers (2024-11-06T12:45:46Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
Our approach infers dynamically evolving relation graphs and hypergraphs to capture the evolution of relations, which the trajectory predictor employs to generate future states.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - PROMISE: A Framework for Developing Complex Conversational Interactions (Technical Report) [33.7054351451505]
We present PROMISE, a framework that facilitates the development of complex language-based interactions with information systems.
We show the benefits of PROMISE in the context of application scenarios within health information systems and demonstrate its ability to handle complex interactions.
arXiv Detail & Related papers (2023-12-06T18:59:11Z) - Online Learning and Planning in Cognitive Hierarchies [10.28577981317938]
We extend an existing formal framework to model complex integrated reasoning behaviours of robotic systems.
New framework allows for a more flexible modelling of the interactions between different reasoning components.
arXiv Detail & Related papers (2023-10-18T23:53:51Z) - Unified Human-Scene Interaction via Prompted Chain-of-Contacts [61.87652569413429]
Human-Scene Interaction (HSI) is a vital component of fields like embodied AI and virtual reality.
This paper presents a unified HSI framework, UniHSI, which supports unified control of diverse interactions through language commands.
arXiv Detail & Related papers (2023-09-14T17:59:49Z) - Self-Adaptive Large Language Model (LLM)-Based Multiagent Systems [0.0]
We propose the integration of large language models (LLMs) into multiagent systems.
We anchor our methodology on the MAPE-K model, which is renowned for its robust support in monitoring, analyzing, planning, and executing system adaptations.
arXiv Detail & Related papers (2023-07-12T14:26:46Z) - OntoChatGPT Information System: Ontology-Driven Structured Prompts for
ChatGPT Meta-Learning [19.444636864515726]
This research presents a comprehensive methodology for utilizing an ontology-driven structured prompts system in interplay with ChatGPT.
The resulting productive triad comprises the methodological foundations, advanced information technology, and the OntoChatGPT system.
arXiv Detail & Related papers (2023-07-11T07:31:58Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting.
We propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology.
arXiv Detail & Related papers (2020-02-11T07:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.