Learning Structured Communication for Multi-agent Reinforcement Learning
- URL: http://arxiv.org/abs/2002.04235v1
- Date: Tue, 11 Feb 2020 07:19:45 GMT
- Title: Learning Structured Communication for Multi-agent Reinforcement Learning
- Authors: Junjie Sheng, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenhao Li, Tsung-Hui
Chang, Jun Wang, Hongyuan Zha
- Abstract summary: This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting.
We propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology.
- Score: 104.64584573546524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work explores the large-scale multi-agent communication mechanism under
a multi-agent reinforcement learning (MARL) setting. We summarize the general
categories of topology for communication structures in MARL literature, which
are often manually specified. Then we propose a novel framework termed as
Learning Structured Communication (LSC) by using a more flexible and efficient
communication topology. Our framework allows for adaptive agent grouping to
form different hierarchical formations over episodes, which is generated by an
auxiliary task combined with a hierarchical routing protocol. Given each formed
topology, a hierarchical graph neural network is learned to enable effective
message information generation and propagation among inter- and intra-group
communications. In contrast to existing communication mechanisms, our method
has an explicit while learnable design for hierarchical communication.
Experiments on challenging tasks show the proposed LSC enjoys high
communication efficiency, scalability, and global cooperation capability.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency [59.15544887307901]
Image semantic communication (ISC) has garnered significant attention for its potential to achieve high efficiency in visual content transmission.
Existing ISC systems based on joint source-channel coding face challenges in interpretability, operability, and compatibility.
We propose a novel trustworthy ISC framework that employs Generative Artificial Intelligence (GenAI) for multiple downstream inference tasks.
arXiv Detail & Related papers (2024-08-07T14:32:36Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Verco: Learning Coordinated Verbal Communication for Multi-agent Reinforcement Learning [42.27106057372819]
We propose a novel multi-agent reinforcement learning algorithm that embeds large language models into agents.
The framework has a message module and an action module.
Experiments conducted on the Overcooked game demonstrate our method significantly enhances the learning efficiency and performance of existing methods.
arXiv Detail & Related papers (2024-04-27T05:10:33Z) - Will 6G be Semantic Communications? Opportunities and Challenges from
Task Oriented and Secure Communications to Integrated Sensing [49.83882366499547]
This paper explores opportunities and challenges of task (goal)-oriented and semantic communications for next-generation (NextG) networks through the integration of multi-task learning.
We employ deep neural networks representing a dedicated encoder at the transmitter and multiple task-specific decoders at the receiver.
We scrutinize potential vulnerabilities stemming from adversarial attacks during both training and testing phases.
arXiv Detail & Related papers (2024-01-03T04:01:20Z) - Learning Hierarchical Prompt with Structured Linguistic Knowledge for
Vision-Language Models [43.56153167864033]
We propose a novel approach to harnessing structured knowledge in large language models (LLMs)
We introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning.
In addition, by incorporating high-level and global-level prompts, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships.
arXiv Detail & Related papers (2023-12-11T12:14:06Z) - Multi-Agent Reinforcement Learning Based on Representational
Communication for Large-Scale Traffic Signal Control [13.844458247041711]
Traffic signal control (TSC) is a challenging problem within intelligent transportation systems.
We propose a communication-based MARL framework for large-scale TSC.
Our framework allows each agent to learn a communication policy that dictates "which" part of the message is sent "to whom"
arXiv Detail & Related papers (2023-10-03T21:06:51Z) - FCMNet: Full Communication Memory Net for Team-Level Cooperation in
Multi-Agent Systems [15.631744703803806]
We introduce FCMNet, a reinforcement learning based approach that allows agents to simultaneously learn an effective multi-hop communications protocol.
Using a simple multi-hop topology, we endow each agent with the ability to receive information sequentially encoded by every other agent at each time step.
FCMNet outperforms state-of-the-art communication-based reinforcement learning methods in all StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2022-01-28T09:12:01Z) - Multi-agent Communication with Graph Information Bottleneck under
Limited Bandwidth (a position paper) [92.11330289225981]
In many real-world scenarios, communication can be expensive and the bandwidth of the multi-agent system is subject to certain constraints.
Redundant messages who occupy the communication resources can block the transmission of informative messages and thus jeopardize the performance.
We propose a novel multi-agent communication module, CommGIB, which effectively compresses the structure information and node information in the communication graph to deal with bandwidth-constrained settings.
arXiv Detail & Related papers (2021-12-20T07:53:44Z) - Effective Communications: A Joint Learning and Communication Framework
for Multi-Agent Reinforcement Learning over Noisy Channels [0.0]
We propose a novel formulation of the "effectiveness problem" in communications.
We consider multiple agents communicating over a noisy channel in order to achieve better coordination and cooperation.
We show via examples that the joint policy learned using the proposed framework is superior to that where the communication is considered separately.
arXiv Detail & Related papers (2021-01-02T10:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.